Codeforces Round #258 (Div. 2/C)/Codeforces451C_Predict Outcome of the Game(枚举)
解题报告
http://blog.csdn.net/juncoder/article/details/38102391
题意:
n场比赛当中k场是没看过的,对于这k场比赛,a,b,c三队赢的场次的关系是a队与b队的绝对值差d1,b队和c队绝对值差d2,求能否使三支球队的赢的场次同样。
思路:
|B-A|=d1
|C-B|=d2
A+B+C=k
这样就有4种情况,各自是:
B>A&&C<B
B>A&&C>B
B<A&&C<B
B<A&&C>B
分别算出在k场比赛中a,b,c三支队伍赢的场次,另外n-k场比赛分别给3支队伍加上,看看能否同样。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define LL long long
using namespace std; int main()
{
int t,i,j;
while(~scanf("%d",&t))
{
while(t--)
{
LL d1,d2,n,k,a,b,c;
scanf("%lld%lld%lld%lld",&n,&k,&d1,&d2);
int f=0;
LL kk=n/3;
//1
double fa=(double)((k+d2)-2*d1)/3;
if(fa>=0&&fa==(LL )fa)
{
a=(LL)fa;
b=d1+a;
c=b-d2;
if(a>=0&&b>=0&&c>=0&&b<=kk&&c<=kk&&a<=kk&&(kk-b+kk-a+kk-c)==(n-k))
{
f=1;
}
}
//2
fa=(double)((k-d2)-2*d1)/3;
if(fa>=0&&fa==(LL )fa)
{
a=(LL)fa;
b=d1+a;
c=b+d2;
if(a>=0&&b>=0&&c>=0&&b<=kk&&c<=kk&&a<=kk&&(kk-b+kk-a+kk-c)==(n-k))
{
f=1;
}
}
//3
fa=(double)((k+d2)+2*d1)/3;
if(fa>=0&&fa==(LL )fa)
{
a=(LL )fa;
b=a-d1;
c=b-d2;
if(a>=0&&b>=0&&c>=0&&b<=kk&&c<=kk&&a<=kk&&(kk-b+kk-a+kk-c)==(n-k))
{
f=1;
}
}
//4
fa=(double)((k-d2)+2*d1)/3;
if(fa>=0&&fa==(LL )fa)
{
a=(LL)fa;
b=a-d1;
c=b+d2;
if(a>=0&&b>=0&&c>=0&&b<=kk&&c<=kk&&a<=kk&&(kk-b+kk-a+kk-c)==(n-k))
{
f=1;
}
}
if(f==1)
printf("yes\n");
else printf("no\n");
}
}
return 0;
}
2 seconds
256 megabytes
standard input
standard output
There are n games in a football tournament. Three teams are participating in it. Currently k games
had already been played.
You are an avid football fan, but recently you missed the whole k games. Fortunately, you remember a guess of your friend for these kgames.
Your friend did not tell exact number of wins of each team, instead he thought that absolute difference between number of wins of first and second team will be d1 and
that of between second and third team will be d2.
You don't want any of team win the tournament, that is each team should have the same number of wins after n games. That's why you want to know: does there
exist a valid tournament satisfying the friend's guess such that no team will win this tournament?
Note that outcome of a match can not be a draw, it has to be either win or loss.
The first line of the input contains a single integer corresponding to number of test cases t (1 ≤ t ≤ 105).
Each of the next t lines will contain four space-separated integers n, k, d1, d2 (1 ≤ n ≤ 1012; 0 ≤ k ≤ n; 0 ≤ d1, d2 ≤ k) —
data for the current test case.
For each test case, output a single line containing either "yes" if it is possible to have no winner of tournament, or "no"
otherwise (without quotes).
5
3 0 0 0
3 3 0 0
6 4 1 0
6 3 3 0
3 3 3 2
yes
yes
yes
no
no
Sample 1. There has not been any match up to now (k = 0, d1 = 0, d2 = 0).
If there will be three matches (1-2, 2-3, 3-1) and each team wins once, then at the end each team will have 1 win.
Sample 2. You missed all the games (k = 3). As d1 = 0 and d2 = 0,
and there is a way to play three games with no winner of tournament (described in the previous sample), the answer is "yes".
Sample 3. You missed 4 matches, and d1 = 1, d2 = 0.
These four matches can be: 1-2 (win 2), 1-3 (win 3), 1-2 (win 1), 1-3 (win 1). Currently the first team has 2 wins, the second team has 1 win, the third team has 1 win. Two remaining matches can be: 1-2 (win 2), 1-3 (win 3). In the end all the teams have equal
number of wins (2 wins).
Codeforces Round #258 (Div. 2/C)/Codeforces451C_Predict Outcome of the Game(枚举)的更多相关文章
- Codeforces Round #258 (Div. 2) C. Predict Outcome of the Game 水题
C. Predict Outcome of the Game 题目连接: http://codeforces.com/contest/451/problem/C Description There a ...
- Codeforces Round #258 (Div. 2)[ABCD]
Codeforces Round #258 (Div. 2)[ABCD] ACM 题目地址:Codeforces Round #258 (Div. 2) A - Game With Sticks 题意 ...
- Codeforces Round #258 (Div. 2) 小结
A. Game With Sticks (451A) 水题一道,事实上无论你选取哪一个交叉点,结果都是行数列数都减一,那如今就是谁先减到行.列有一个为0,那么谁就赢了.因为Akshat先选,因此假设行 ...
- Codeforces Round #258 (Div. 2)-(A,B,C,D,E)
http://blog.csdn.net/rowanhaoa/article/details/38116713 A:Game With Sticks 水题.. . 每次操作,都会拿走一个横行,一个竖行 ...
- Codeforces Round #258 (Div. 2)
A - Game With Sticks 题目的意思: n个水平条,m个竖直条,组成网格,每次删除交点所在的行和列,两个人轮流删除,直到最后没有交点为止,最后不能再删除的人将输掉 解题思路: 每次删除 ...
- Codeforces Round #258 (Div. 2)(A,B,C,D)
题目链接 A. Game With Sticks time limit per test:1 secondmemory limit per test:256 megabytesinput:standa ...
- Codeforces Round #258 (Div. 2) B. Sort the Array
题目链接:http://codeforces.com/contest/451/problem/B 思路:首先找下降段的个数,假设下降段是大于等于2的,那么就直接输出no,假设下降段的个数为1,那么就把 ...
- Codeforces Round #258 (Div. 2) E. Devu and Flowers 容斥
E. Devu and Flowers 题目连接: http://codeforces.com/contest/451/problem/E Description Devu wants to deco ...
- Codeforces Round #258 (Div. 2) D. Count Good Substrings 水题
D. Count Good Substrings 题目连接: http://codeforces.com/contest/451/problem/D Description We call a str ...
随机推荐
- delphi 把多个线程的请求阻塞到另一个线程 TElegantThread
本例是把多个线程访问数据库的请求,全部阻塞到一个线程. 这是实际编程中常见的一种问题. 示例源码下载,所需支持单元均在源码中,且附详细说明. TElegantThread 的父类是 TSimpleTh ...
- 在WPF中自定义你的绘制(三)
原文:在WPF中自定义你的绘制(三) 在WPF中自定义你的绘制(三) ...
- linux swap 分区调控(swap分区 lvm管理)
注:linux swap分区 采用lvm管理,调控可以采用下面的方法 一.查看 swap lv [root@testdb ~]# vgdisplay -v Finding all volume ...
- ReactNative setNativeProps
在封装原生组件的过程,如果我们希望在reactnative中触发原生的属性,但是又不需要暴露在reactnative的组件中. 那么我们就要用到setNativeProps这个方法,这个方法会直接触发 ...
- OAuth2.0服务器端的实现
authorize 授权关系存储表字段 备注appid 应用IDuserid 用户IDaddtime 添加时间…… 其他表3 access_token 访问令牌存储表字段 备注access_token ...
- 编写isNull isArray isFunction的方法
1.isNull 判断null,需要排除掉undefined和0.''(空串). function isNull(arr){ return !arr&&typeof arr!=='un ...
- vba考勤处理
sheet1 格式 Sub 统计人数() 'A为号码C姓名 D时间 Dim j As Integer j = 1 For i = 2 To 100000 Step 1 If Range("a ...
- div+css中常见的浏览器兼容性处理-兼容不同浏览器
在网站设计的时候,应该注意css样式兼容不同浏览器问题,特别是对完全使用DIV CSS设计的网,就应该更注意IE6 IE7 FF对CSS样式的兼容,不然,你的网乱可能出去不想出现的效果! div+cs ...
- c#操作sqlite
一.添加选中dll引用如下图 二.下载一个sqlite建表建库工具sqlitedatabasebrowser如下图 三.使用sqlitedatabasebrowser建库建表 四.插入表数据如下图 四 ...
- hive 函数学习
NAME PRICE ---- ----- AAA 1.59 AAA 2.00 AAA 0.75 BBB 3.48 BBB 2.19 BBB 0.99 BBB 2.50 I would like to ...