解题报告

http://blog.csdn.net/juncoder/article/details/38102391

题意:

n场比赛当中k场是没看过的,对于这k场比赛,a,b,c三队赢的场次的关系是a队与b队的绝对值差d1,b队和c队绝对值差d2,求能否使三支球队的赢的场次同样。

思路:

|B-A|=d1

|C-B|=d2

A+B+C=k

这样就有4种情况,各自是:

B>A&&C<B

B>A&&C>B

B<A&&C<B

B<A&&C>B

分别算出在k场比赛中a,b,c三支队伍赢的场次,另外n-k场比赛分别给3支队伍加上,看看能否同样。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define LL long long
using namespace std; int main()
{
int t,i,j;
while(~scanf("%d",&t))
{
while(t--)
{
LL d1,d2,n,k,a,b,c;
scanf("%lld%lld%lld%lld",&n,&k,&d1,&d2);
int f=0;
LL kk=n/3;
//1
double fa=(double)((k+d2)-2*d1)/3;
if(fa>=0&&fa==(LL )fa)
{
a=(LL)fa;
b=d1+a;
c=b-d2;
if(a>=0&&b>=0&&c>=0&&b<=kk&&c<=kk&&a<=kk&&(kk-b+kk-a+kk-c)==(n-k))
{
f=1;
}
}
//2
fa=(double)((k-d2)-2*d1)/3;
if(fa>=0&&fa==(LL )fa)
{
a=(LL)fa;
b=d1+a;
c=b+d2;
if(a>=0&&b>=0&&c>=0&&b<=kk&&c<=kk&&a<=kk&&(kk-b+kk-a+kk-c)==(n-k))
{
f=1;
}
}
//3
fa=(double)((k+d2)+2*d1)/3;
if(fa>=0&&fa==(LL )fa)
{
a=(LL )fa;
b=a-d1;
c=b-d2;
if(a>=0&&b>=0&&c>=0&&b<=kk&&c<=kk&&a<=kk&&(kk-b+kk-a+kk-c)==(n-k))
{
f=1;
}
}
//4
fa=(double)((k-d2)+2*d1)/3;
if(fa>=0&&fa==(LL )fa)
{
a=(LL)fa;
b=a-d1;
c=b+d2;
if(a>=0&&b>=0&&c>=0&&b<=kk&&c<=kk&&a<=kk&&(kk-b+kk-a+kk-c)==(n-k))
{
f=1;
}
}
if(f==1)
printf("yes\n");
else printf("no\n");
}
}
return 0;
}
Predict Outcome of the Game
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

There are n games in a football tournament. Three teams are participating in it. Currently k games
had already been played.

You are an avid football fan, but recently you missed the whole k games. Fortunately, you remember a guess of your friend for these kgames.
Your friend did not tell exact number of wins of each team, instead he thought that absolute difference between number of wins of first and second team will be d1 and
that of between second and third team will be d2.

You don't want any of team win the tournament, that is each team should have the same number of wins after n games. That's why you want to know: does there
exist a valid tournament satisfying the friend's guess such that no team will win this tournament?

Note that outcome of a match can not be a draw, it has to be either win or loss.

Input

The first line of the input contains a single integer corresponding to number of test cases t (1 ≤ t ≤ 105).

Each of the next t lines will contain four space-separated integers n, k, d1, d2 (1 ≤ n ≤ 1012; 0 ≤ k ≤ n; 0 ≤ d1, d2 ≤ k) —
data for the current test case.

Output

For each test case, output a single line containing either "yes" if it is possible to have no winner of tournament, or "no"
otherwise (without quotes).

Sample test(s)
input
5
3 0 0 0
3 3 0 0
6 4 1 0
6 3 3 0
3 3 3 2
output
yes
yes
yes
no
no
Note

Sample 1. There has not been any match up to now (k = 0, d1 = 0, d2 = 0).
If there will be three matches (1-2, 2-3, 3-1) and each team wins once, then at the end each team will have 1 win.

Sample 2. You missed all the games (k = 3). As d1 = 0 and d2 = 0,
and there is a way to play three games with no winner of tournament (described in the previous sample), the answer is "yes".

Sample 3. You missed 4 matches, and d1 = 1, d2 = 0.
These four matches can be: 1-2 (win 2), 1-3 (win 3), 1-2 (win 1), 1-3 (win 1). Currently the first team has 2 wins, the second team has 1 win, the third team has 1 win. Two remaining matches can be: 1-2 (win 2), 1-3 (win 3). In the end all the teams have equal
number of wins (2 wins).

Codeforces Round #258 (Div. 2/C)/Codeforces451C_Predict Outcome of the Game(枚举)的更多相关文章

  1. Codeforces Round #258 (Div. 2) C. Predict Outcome of the Game 水题

    C. Predict Outcome of the Game 题目连接: http://codeforces.com/contest/451/problem/C Description There a ...

  2. Codeforces Round #258 (Div. 2)[ABCD]

    Codeforces Round #258 (Div. 2)[ABCD] ACM 题目地址:Codeforces Round #258 (Div. 2) A - Game With Sticks 题意 ...

  3. Codeforces Round #258 (Div. 2) 小结

    A. Game With Sticks (451A) 水题一道,事实上无论你选取哪一个交叉点,结果都是行数列数都减一,那如今就是谁先减到行.列有一个为0,那么谁就赢了.因为Akshat先选,因此假设行 ...

  4. Codeforces Round #258 (Div. 2)-(A,B,C,D,E)

    http://blog.csdn.net/rowanhaoa/article/details/38116713 A:Game With Sticks 水题.. . 每次操作,都会拿走一个横行,一个竖行 ...

  5. Codeforces Round #258 (Div. 2)

    A - Game With Sticks 题目的意思: n个水平条,m个竖直条,组成网格,每次删除交点所在的行和列,两个人轮流删除,直到最后没有交点为止,最后不能再删除的人将输掉 解题思路: 每次删除 ...

  6. Codeforces Round #258 (Div. 2)(A,B,C,D)

    题目链接 A. Game With Sticks time limit per test:1 secondmemory limit per test:256 megabytesinput:standa ...

  7. Codeforces Round #258 (Div. 2) B. Sort the Array

    题目链接:http://codeforces.com/contest/451/problem/B 思路:首先找下降段的个数,假设下降段是大于等于2的,那么就直接输出no,假设下降段的个数为1,那么就把 ...

  8. Codeforces Round #258 (Div. 2) E. Devu and Flowers 容斥

    E. Devu and Flowers 题目连接: http://codeforces.com/contest/451/problem/E Description Devu wants to deco ...

  9. Codeforces Round #258 (Div. 2) D. Count Good Substrings 水题

    D. Count Good Substrings 题目连接: http://codeforces.com/contest/451/problem/D Description We call a str ...

随机推荐

  1. Inno Setup 创建站点,创建虚拟目录

    原文 http://hi.baidu.com/0531_sunmiles/item/ce22554ab7d33d0be9350477 下面的这段代码是用Inno Setup 做安装包的时候创建IIS新 ...

  2. VC++学习之一

    对于编程语言,我一直认为它只是一种工具,就像锤子,斧头一样,每种语言都用自己比较适用的地方,用的时候拿来就可以了.这种思想让我对语言没有做过很仔细的学习,虽然频繁使用过C,C++,java,C#,De ...

  3. 小巧数据库 Derby 使用攻略

    阅读目录 1. Derby 介绍 2. 稍稍配置下环境变量 3. Derby 操作和 Java 访问 回到顶部 1. Derby 介绍 将目光放在小 Derby 的原因是纯绿色.轻巧.内存占用小,分分 ...

  4. C# 导出 excel 复杂格式 html导出

    /// <summary> /// 夜班津贴统计导出 /// </summary> public void ExportOtStat(string data) { var in ...

  5. [置顶] Direct UI

    有个坑爹的说法:其实Direct UI只是一个思想,要实现这个思想,还要靠自己. 采用windowless方式用api或gdi实现ui的绘制. DirectUI意为直接在父窗口上绘图(Paint on ...

  6. wait函数返回值总结,孤儿进程与僵尸进程[总结]

    http://blog.csdn.net/astrotycoon/article/details/41172389 wait函数返回值总结 http://www.cnblogs.com/Anker/p ...

  7. Makefile与Shell的问题

    http://blog.csdn.net/absurd/article/details/636418 Makefile与Shell的问题 大概只要知道Makefile的人,都知道Makefile可以调 ...

  8. Dictionary到List转换中的性能问题 转

    本文来自:http://www.cnblogs.com/353373440qq/p/3488367.html 在应用泛型中,我们经常使用Dictionary,经常会用到Dictionary到List的 ...

  9. 依赖注入及AOP简述(九)——单例和无状态Scope .

    三.依赖注入对象的Scope及其生命周期 在前面的章节我们讲到,依赖注入容器之所以能够区别于以往的ServiceLocator等容器,是在于其不但能够自动构建多层次的.完整的依赖关系图,并且可以管理依 ...

  10. LINQ 基本子句之一 (select/where/group/into)

    特别喜欢同事看到我写了一句小排序的时候说,他当然喜欢Linq了,虽然我只是baidu之,不知其然也不知其所以然. 基本格式 var<变量> = from <项目> in < ...