B - (例题)因子和

Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Submit Status

Description

七夕节那天,月老来到数字王国,他在城门上贴了一张告示,并且和数字王国的人们说:"你们想知道你们的另一半是谁吗?那就按照告示上的方法去找吧!"
人们纷纷来到告示前,都想知道谁才是自己的另一半.告示如下:

数字N的因子就是所有比N小又能被N整除的所有正整数,如12的因子有1,2,3,4,6.
你想知道你的另一半吗?

 

Input

输入数据的第一行是一个数字T(1<=T<=500000),它表明测试数据的组数.然后是T组测试数据,每组测试数据只有一个数字N(1<=N<=500000).
 

Output

对于每组测试数据,请输出一个代表输入数据N的另一半的编号.
 

Sample Input

3
2
10
20
 

Sample Output

1
8
22
题目大意:给你一个数n,让你求他的所有因子和,除了他本身
思路分析:暴力也可以做,姿势好就行,O(sqrt(n))的复杂度,即求因子,扫到sqrt(n)就可以,要特别注意i*i==n的情况
标准算法则是应用正整数唯一分解定理,将n唯一分解后,它的所有因子和实际上就是(a1^0+a2^0...)(a2^0....)......
即各种排列组合的和,又因为不包含本身,所以最后减去n;
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include<algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int maxn=;//
bool vis[maxn];
ll prime[maxn/];
int tot;
void getprime()//因为n的范围是1e14,打表只需要打到sqrt(n)即可,最多只可能有一个素因子大于sqrt(n),最后特判一下即可;
{
memset(vis,true,sizeof(vis));
tot=;
for(ll i=;i<maxn;i++)
{
if(vis[i])
{
prime[tot++]=i;
for(ll j=i*i;j<maxn;j+=i)
{
vis[j]=false;
}
}
}
}
/*void Eulerprime()
{
memset(vis,true,sizeof(vis));
int tot=0;
for(int i=2;i<maxn;i++)
{
if(vis[i]) prime[tot++]=i;
for(int j=0;j<tot&&prime[j]*i<maxn;j++)
{
vis[i*prime[j]]=false;
if(i%prime[j]==0) break;
}
}
}*/
int a[],b[];
int cnt=;
void sbreak(ll n)//正整数唯一分解
{
memset(a,,sizeof(a));
memset(b,,sizeof(b));
cnt=;
for(int i=;prime[i]*prime[i]<=n;i++)
{
if(n%prime[i]==)
{
a[cnt]=prime[i];
while(n%prime[i]==)
{
b[cnt]++;
n/=prime[i];
}
cnt++;
}
}
if(n!=)
{
a[cnt]=n;
b[cnt]=;
cnt++;//为了使两种情况分解后素因子下标都是0~cnt-1;
}
}
int pow_mod(int m,int n)
{
ll pw=;
while(n)
{
if(n&) pw*=m;
m*=m;
n/=;
}
return pw;
}
int kase;
int main()
{
int T;
ll n;
getprime();
scanf("%d",&T);
kase=;
while(T--)
{
scanf("%lld",&n);
sbreak(n);
ll sum=;
for(int i=;i<cnt;i++)
{
ll cur=;
for(int j=;j<=b[i];j++)
{
cur+=pow_mod(a[i],j);
}
sum*=cur;
}
printf("%lld\n",sum-n);
}
}

hdu1215 正整数唯一分解定理应用的更多相关文章

  1. lightoj 1236 正整数唯一分解定理

    A - (例题)整数分解 Crawling in process... Crawling failed Time Limit:2000MS     Memory Limit:32768KB     6 ...

  2. hdu4497 正整数唯一分解定理应用

    C - (例题)整数分解,计数 Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:65535KB    ...

  3. hdu1215-七夕节-(埃氏筛+唯一分解定理)

    七夕节 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submiss ...

  4. HDU-1215 七夕节 数论 唯一分解定理 求约数之和

    题目链接:https://cn.vjudge.net/problem/HDU-1215 题意 中文题,自己去看吧,懒得写:) 思路 \[ Ans=\prod \sum p_i^j \] 唯一分解定理 ...

  5. NOIP2009Hankson 的趣味题[唯一分解定理|暴力]

    题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现 在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲 ...

  6. 1341 - Aladdin and the Flying Carpet ---light oj (唯一分解定理+素数筛选)

    http://lightoj.com/volume_showproblem.php?problem=1341 题目大意: 给你矩形的面积(矩形的边长都是正整数),让你求最小的边大于等于b的矩形的个数. ...

  7. UVa 10791 Minimum Sum LCM【唯一分解定理】

    题意:给出n,求至少两个正整数,使得它们的最小公倍数为n,且这些整数的和最小 看的紫书--- 用唯一分解定理,n=(a1)^p1*(a2)^p2---*(ak)^pk,当每一个(ak)^pk作为一个单 ...

  8. 简单数论之整除&质因数分解&唯一分解定理

    [整除] 若a被b整除,即a是b的倍数,那么记作b|a("|"是整除符号),读作"b整除a"或"a能被b整除".b叫做a的约数(或因数),a ...

  9. 唯一分解定理(以Minimun Sum LCM UVa 10791为例)

    唯一分解定理是指任何正整数都可以分解为一些素数的幂之积,即任意正整数n=a1^p1*a2^p2*...*ai^pi:其中ai为任意素数,pi为任意整数. 题意是输入整数n,求至少2个整数,使得它们的最 ...

随机推荐

  1. H5原生拖拽事件

    使用原生js实现简单的拖拽事件 <!DOCTYPE html> <html lang="en"> <head> <meta charset ...

  2. 移动平台中 meta 标签的使用

    一.meta 标签分两大部分:HTTP 标题信息(http-equiv)和页面描述信息(name). 1.http-equiv 属性的 Content-Type 值(显示字符集的设定) 说明:设定页面 ...

  3. python中os.walk()遍历目录中所有文件

    之前一直用判断目录和文件的递归方法来获取一个目录下的所有文件,后来发现python里面已经写好了这个函数,不需要自己递归获取了,记录下os.walk()函数的用法 目的:获取path下所有文件,返回由 ...

  4. iOS学习之数据解析

    解析:按照约定好的格式提取数据的过程叫做解析; 后台开发人员按照约定好的格式存入数据,前端开发人员按照约定的格式读取数据; 主流的格式: XML / JSON 前端和后台都能识别的格式;  XML解析 ...

  5. GO逆转字符串

    package main import "fmt" func main(){ str:="foobar" a:=[]rune(str) ,len(a)-;i&l ...

  6. Codeforces 335B Palindrome

    http://codeforces.com/contest/335/problem/B 题意:  给定一个长度不超过5*10^4的只包含小写字母的字符串,要求你求它的回文子序列,如果存在长度为100的 ...

  7. windows下的用户态调试的底层与上层实现

    操作系统:windows XP 调试器通过CreateProcess传入带有DEBUG_PROCESS和DEBUG_ONLY_THIS_PROCESS的dwCreationFlags创建被调试进程.这 ...

  8. Linux环境下使用JFS文件系统

    Linux环境下使用JFS文件系统 JFS是IBM公司为linux系统开发的一个日志文件系统.从IBM的实力及它对Linux的态度来看,JFS应该是未来日志文件系统中最具实力的一个文件系统. JFS提 ...

  9. SPOJ375.QTREE树链剖分

    题意:一个树,a b c 代表a--b边的权值为c.CHANGE x y  把输入的第x条边的权值改为y,QUERY x y 查询x--y路径上边的权值的最大值. 第一次写树链剖分,其实树链剖分只能说 ...

  10. pyqt记录内容(音乐播放器)

    #这是UI文件 # -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'AudioPlayerDia ...