hdu1853解题报告
题意和解决回路匹配的思路如同hdu3488
(这里我第一次想到最短路,但是对于有回路这个不知道怎么处理,后来看了别人的解题报告才知道KM匹配,但是看到KM之后就自己想...想了很久....还是不知道回路这个地方怎么匹配......其实应该这样来想....总共有N个城市....如果是要形成回路..那么就是环,那么每一个城市都要和指向的城市匹配一次,也要被一个城市指向自己匹配一次...那么匹配的时候我们把所有的N个城市分成两拨,对于每一个城市都匹配一次就得到了一个完全匹配(既每个点都匹配一次,也就是每一个城市匹配一次、被匹配一次).....那么还有一个地方要注意的是:这里有重边...我们应该选择小的边更新)
这里唯一有一点点不同的就是可以存在无回路的情况,那就是有一个点或者多个点没有匹配到.....
那么在代码中体现出来:
// 31MS 272K
#include<stdio.h>
#include<string.h> #define MAX 101
#define INF 1<<30-1 int N,M;
int map[MAX][MAX];
int lx[MAX],ly[MAX],link[MAX],slar[MAX];
bool visx[MAX],visy[MAX]; bool dfs(int x)
{
visx[x] = true;
for(int y = 1; y <= N; y ++)
{
if(visy[y]) continue;// || x == y
int t = lx[x] + ly[y] - map[x][y];
if(t == 0)
{
visy[y] = true;
if(link[y] == -1 || dfs(link[y]))
{
link[y] = x;return true;
}
}
else if(slar[y] > t) slar[y] = t;
}
return false;
} int KM()
{
int i,j;
memset(ly,0,sizeof(ly));
memset(link,-1,sizeof(link));
for(i = 1 ;i <= N;i ++)
{
lx[i] = -INF;
for(j = 1; j <= N; j ++)
if(lx[i] < map[i][j]) lx[i] = map[i][j];
}
for(int x = 1; x <=N; x ++)
{
for(i = 1; i <= N ; i ++) slar[i] = INF;
while(1)
{
memset(visx,false,sizeof(visx));
memset(visy,false,sizeof(visy));
if(dfs(x)) break; int d = INF;
for(i = 1; i <= N;i ++)
if(!visy[i] && d > slar[i]) d = slar[i];
for(i = 1; i <= N; i ++)
if(visx[i]) lx[i] -= d;
for(i = 1; i <= N; i ++)
if(visy[i]) ly[i] += d;
else slar[i] -= d;
}
}
int ans = 0;bool flag = false;
for(i = 1; i <= N; i ++)
if(link[i] == -1 || map[link[i]][i] == -INF)//这里判断匹配不到的情况
{
flag=true;break;
}
if(flag) ans = 1;
return -ans;
} int main()
{
int i,j;
int a,b,c;
while(~scanf("%d%d",&N,&M))
{
for(i = 1; i <= N; i ++)
for(j = 1; j <= N; j ++)
map[i][j]=-INF;
while(M -- )
{
scanf("%d%d%d",&a,&b,&c);
map[a][b] = map[a][b] > -c ? map[a][b] : -c;//重边选择
}
printf("%d\n",KM());
}
return 0;
}
个人愚昧观点..欢迎指正与讨论
hdu1853解题报告的更多相关文章
- CH Round #56 - 国庆节欢乐赛解题报告
最近CH上的比赛很多,在此会全部写出解题报告,与大家交流一下解题方法与技巧. T1 魔幻森林 描述 Cortana来到了一片魔幻森林,这片森林可以被视作一个N*M的矩阵,矩阵中的每个位置上都长着一棵树 ...
- 二模13day1解题报告
二模13day1解题报告 T1.发射站(station) N个发射站,每个发射站有高度hi,发射信号强度vi,每个发射站的信号只会被左和右第一个比他高的收到.现在求收到信号最强的发射站. 我用了时间复 ...
- BZOJ 1051 最受欢迎的牛 解题报告
题目直接摆在这里! 1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4438 Solved: 2353[S ...
- 习题:codevs 2822 爱在心中 解题报告
这次的解题报告是有关tarjan算法的一道思维量比较大的题目(真的是原创文章,希望管理员不要再把文章移出首页). 这道题蒟蒻以前做过,但是今天由于要复习tarjan算法,于是就看到codevs分类强联 ...
- 习题:codevs 1035 火车停留解题报告
本蒟蒻又来写解题报告了.这次的题目是codevs 1035 火车停留. 题目大意就是给m个火车的到达时间.停留时间和车载货物的价值,车站有n个车道,而火车停留一次车站就会从车载货物价值中获得1%的利润 ...
- 习题: codevs 2492 上帝造题的七分钟2 解题报告
这道题是受到大犇MagHSK的启发我才得以想出来的,蒟蒻觉得自己的代码跟MagHSK大犇的代码完全比不上,所以这里蒟蒻就套用了MagHSK大犇的代码(大家可以关注下我的博客,友情链接就是大犇MagHS ...
- 习题:codevs 1519 过路费 解题报告
今天拿了这道题目练练手,感觉自己代码能力又增强了不少: 我的思路跟别人可能不一样. 首先我们很容易就能看出,我们需要的边就是最小生成树算法kruskal算法求出来的边,其余的边都可以删掉,于是就有了这 ...
- NOIP2016提高组解题报告
NOIP2016提高组解题报告 更正:NOIP day1 T2天天爱跑步 解题思路见代码. NOIP2016代码整合
- LeetCode 解题报告索引
最近在准备找工作的算法题,刷刷LeetCode,以下是我的解题报告索引,每一题几乎都有详细的说明,供各位码农参考.根据我自己做的进度持续更新中...... ...
随机推荐
- Spring Boot普通类调用bean
1 在Spring Boot可以扫描的包下 假设我们编写的工具类为SpringUtil. 如果我们编写的SpringUtil在Spring Boot可以扫描的包下或者使用@ComponentScan引 ...
- Palindrome(Manacher)
Palindrome Time Limit: 15000MS Memory Limit: 65536K Total Submissions: 6183 Accepted: 2270 Descr ...
- String的几种比较方法对比(Compare,CompareTo, CompareOrdinal、Equals)
String类字符串比较大概有4种方法:Compare(),CompareTo(), CompareOrdinal()和Equals(). Compare()方法是CompareTo()的静态版本.而 ...
- MVC3.0部署问题小结
环境:MVC3.0,IIS7 Mvc3.0的部署除像正常部署aspx程序一样外,另外还需要注意的几点:1. 安装MVC3.0 确保服务器上安装了MVC3.0,默认版本是“3.0.20105.0” 2. ...
- MD5算法【计算文件和字符串的MD5值】
1. MD5算法是一种散列(hash)算法(摘要算法,指纹算法),不是一种加密算法(易错).任何长度的任意内容都可以用MD5计算出散列值.MD5的前身:MD2.MD3.MD4.介绍工具:CalcMD5 ...
- poj 1715 Hexadecimal Numbers 排列组合
/** 大意: 给定16进制数的16个字母,,求第k大的数,,要求数的长度最大为8.,并且每个数互不相同. 思路: 从高到低挨个枚举,每一位能组成的排列数 ,拿最高位来说,能做成的排列数为15*A(1 ...
- spoj 7001
/*** 大意:计算gcd(x,y,z) =1 0<= x, y , z <= n 问有多少个这样的对 莫比乌斯反演:(反演: 用结果推原因) 函数m(m)的定义如下: 莫比乌斯反演: * ...
- Introduction to REST #Reprinted#
from http://www.cnblogs.com/shanyou/archive/2012/05/12/2496959.html dudu的 HttpClient + ASP.NET Web A ...
- C++ ofstream和ifstream详细用法
转载地址:http://soft.chinabyte.com/database/460/11433960.shtml ofstream是从内存到硬盘,ifstream是从硬盘到内存,其实所谓的流缓冲就 ...
- XPath与多线程爬虫
XPath是一门在xml中查询信息的语言安装使用XPath 1.安装lxml库 window:pip install lxmllinux:sudo pip install lxml国内安装缓慢,建议到 ...