Problem Description

A robot has been programmed to follow the instructions in its path. Instructions for the next direction the robot is to move are laid down in a grid. The possible instructions are 
N north (up the page) S south (down the page) E east (to the right on the page) W west (to the left on the page)
For example, suppose the robot starts on the north (top) side of Grid 1 and starts south (down). The path the robot follows is shown. The robot goes through 10 instructions in the grid before leaving the grid.
Compare what happens in Grid 2: the robot goes through 3 instructions only once, and then starts a loop through 8 instructions, and never exits.
You are to write a program that determines how long it takes a robot to get out of the grid or how the robot loops around.
 
Input
There will be one or more grids for robots to navigate. The data for each is in the following form. On the first line are three integers separated by blanks: the number of rows in the grid, the number of columns in the grid, and the number of the column in which the robot enters from the north. The possible entry columns are numbered starting with one at the left. Then come the rows of the direction instructions. Each grid will have at least one and at most 10 rows and columns of instructions. The lines of instructions contain only the characters N, S, E, or W with no blanks. The end of input is indicated by a row containing 0 0 0.
 
Output
For each grid in the input there is one line of output. Either the robot follows a certain number of instructions and exits the grid on any one the four sides or else the robot follows the instructions on a certain number of locations once, and then the instructions on some number of locations repeatedly. The sample input below corresponds to the two grids above and illustrates the two forms of output. The word "step" is always immediately followed by "(s)" whether or not the number before it is 1.
 
Sample Input
3 6 5
NEESWE
WWWESS
SNWWWW
4 5 1
SESWE
EESNW
NWEEN
EWSEN
0 0
 
Sample Output
10 step(s) to exit
3 step(s) before a loop of 8 step(s)
 
Source
 

模拟题

AC代码:

 #pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<bitset>
#include<map>
#include<vector>
#include<stdlib.h>
using namespace std;
#define ll long long
#define eps 1e-10
#define MOD 1000000007
#define N 16
#define inf 1e12
int n,m,st;
char mp[N][N];
int vis[N][N];
bool judge(int i,int j){
if(i< || i>=n || j< || j>=m) return true;
return false;
}
int main()
{
while(scanf("%d%d",&n,&m)==){
if(n== && m==) break;
memset(vis,,sizeof(vis));
memset(mp,'\0',sizeof(mp));
scanf("%d",&st);
st--;
for(int i=;i<n;i++){
scanf("%s",mp[i]);
}
/*for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
printf("%c",mp[i][j]);
}
}
*/ int i=,j=st;
int ans=;
int loops=-;
int L;
//vis[i][j]=1;
while(){
if(mp[i][j]=='W' && vis[i][j]==){
vis[i][j]=ans;
j--; //printf("%d %d\n",i,j);
}else if(mp[i][j]=='E' && vis[i][j]==){
vis[i][j]=ans;
j++;
//printf("%d %d\n",i,j); }else if(mp[i][j]=='N' && vis[i][j]==){
vis[i][j]=ans;
i--;
//printf("%d %d\n",i,j); }else if(mp[i][j]=='S' && vis[i][j]==){
vis[i][j]=ans;
i++;
//printf("%d %d\n",i,j); }
else if(vis[i][j]){
ans--;
loops = ans-vis[i][j]+;
L = vis[i][j];
break;
} else if(judge(i,j)){
//printf("%d %d\n",i,j);
ans--;
break;
}
ans++;
} if(loops==-){
printf("%d step(s) to exit\n",ans);
}else{
printf("%d step(s) before a loop of %d step(s)\n",L-,loops);
} }
return ;
}

hdu 1035 Robot Motion(模拟)的更多相关文章

  1. [ACM] hdu 1035 Robot Motion (模拟或DFS)

    Robot Motion Problem Description A robot has been programmed to follow the instructions in its path. ...

  2. HDOJ(HDU).1035 Robot Motion (DFS)

    HDOJ(HDU).1035 Robot Motion [从零开始DFS(4)] 点我挑战题目 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架/双重DF ...

  3. HDU 1035 Robot Motion(dfs + 模拟)

    嗯... 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1035 这道题比较简单,但自己一直被卡,原因就是在读入mp这张字符图的时候用了scanf被卡. ...

  4. hdu 1035 Robot Motion(dfs)

    虽然做出来了,还是很失望的!!! 加油!!!还是慢慢来吧!!! >>>>>>>>>>>>>>>>> ...

  5. 题解报告:hdu 1035 Robot Motion(简单搜索一遍)

    Problem Description A robot has been programmed to follow the instructions in its path. Instructions ...

  6. (step 4.3.5)hdu 1035(Robot Motion——DFS)

    题目大意:输入三个整数n,m,k,分别表示在接下来有一个n行m列的地图.一个机器人从第一行的第k列进入.问机器人经过多少步才能出来.如果出现了循环 则输出循环的步数 解题思路:DFS 代码如下(有详细 ...

  7. hdoj 1035 Robot Motion

    Robot Motion Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tota ...

  8. HDU 1035(走迷宫 模拟)

    题意是给定初始位置在一个迷宫中按照要求前进,判断多少步能离开迷宫或者多少步会走入一个长达多少步的循环. 按要求模拟前进的位置,对每一步在 vis[ ] 数组中进行已走步数的记录,走出去或走到已走过的位 ...

  9. POJ 1573 Robot Motion 模拟 难度:0

    #define ONLINE_JUDGE #include<cstdio> #include <cstring> #include <algorithm> usin ...

随机推荐

  1. hdu 1502 Regular Words_高精度+dp

    题意:问按规则排成的串有多少个A(c)>= B(c) >= C(c) 思路:因为写大整数太累,就偷懒了一下直接用java水过 import java.math.BigInteger; im ...

  2. libcurl 多线程使用注意事项 - Balder~专栏 - 博客频道 - CSDN.NET

    libcurl 多线程使用注意事项 - Balder~专栏 - 博客频道 - CSDN.NET libcurl 多线程使用注意事项 分类: C/C++学习 2012-05-24 18:48 2843人 ...

  3. 关闭ubuntu apport

    apport就是ubuntu上的"crash report"服务,就是当有程序崩溃时弹出的那个发送error report的程序: 个人觉得此功能无用,本着给我的老本子节省资源的思 ...

  4. 多线程并发 synchronized对象锁的控制与优化

    本文针对用户取款时多线程并发情境,进行相关多线程控制与优化的描述. 首先建立用户类UserTest.业务操作类SynchronizedTest.数据存取类DataStore,多线程测试类MultiTh ...

  5. MSSQL 镜像

    1.设置数据库CollectionDB 为完整备份模式服务端: USE master ALTER DATABASE CollectionGuest SET RECOVERY FULL GO 镜相端: ...

  6. Calculation(dfs+状压dp)

    Problem 1608 - Calculation Time Limit: 500MS   Memory Limit: 65536KB    Total Submit: 311  Accepted: ...

  7. COJ 1059 - Numeric Parity 位操作

    非常好玩的一道题.能够熟悉下位操作实现和玩一玩bitset这个容器 Description We define the parity of an integer N as the sum of the ...

  8. 理解MVC路由配置(转)

    在上一篇文章中,我简短的谈了一下MVC的底层运行机制,如果对MVC还不是很了解的朋友,可以作为入门的参照.接下来,我开始介绍关于URL路由的相关知识.URL路由不是MVC独有的,相反它是独立于MVC而 ...

  9. exist和not exist用法

    参考:http://wenku.baidu.com/view/577f4d49cf84b9d528ea7a6f.html    //这个讲的很详细 引用自:http://chenling1018.bl ...

  10. HDU 2157 - How many ways??

    给图,图中任意可达的两点间步数为1 问从图中A点走到B点步数为k的有几条路 祭出离散数学图论那章中的 邻接矩阵A. 设S=Ak 则 S[a][b] 为 a到b,步数为k的不同路的条数 剩下的就是矩阵快 ...