svm评价指标公式
在做svm分类试验时,对于结果的处理,仅用一种指标很难得到正确评估算法的效果。所以,一般要用到precision(精确率),recall(召回率),F-measure、accuracy(准确率)四个指标。
首先认识四个与其相关参数:
相关(Relevant),正类 | 无关(NonRelevant),负类 | |
被检索到(Retrieved) | true positives(TP 正类判定为正类) | false positives(FP 负类判定为正类,"存伪") |
未被检索到(Not Retrieved) | false negatives(FN 正类判定为负类,"去真") | true negatives(TN 负类判定为负类) |
accuracy(准确率):(TP+TN)/(TP+FP+FN+TN)
precision(精确率):TP/(TP+FP)
recall(召回率) :TP/(TP+FN)
F-measure
:2/F=1/P+1/R < -------> 2TP/2TP+FP+FN
网上一个例子:
假如某个班级有男生80人,女生20人,共计100人.目标是找出所有女生.
现在某人挑选出50个人,其中20人是女生,另外还错误的把30个男生也当作女生挑选出来了.
作为评估者的你需要来评估(evaluation)下他的工作
其中:TP=20 FP=30 FN=0 TN=50
accuracy=70 %(70 / 100)【70(20女+50男)】,precision=40%【20女生/(20女生+30误判为女生的男生)】
recall=100%【20女生/(20女生+
0 误判为男生的女生)】 F-measure=57.143%(2∗0.4∗10.4+1)
svm评价指标公式的更多相关文章
- 支持向量机(SVM)公式整理
支持向量机可以分为三类: 线性可分的情况 ==> 硬间隔最大化 ==> 硬间隔SVM 近似线性可分的情况 ==> 软间隔最大化 ==> 线性支持向量机 线性不可分的情况 ==& ...
- 机器学习笔记——支持向量机 (SVM)
声明: 机器学习系列主要记录自己学习机器学习算法过程中的一些参考和总结,其中有部分内容是借鉴参考书籍和参考博客的. 目录: 什么支持向量机(SVM) SVM中必须知道的概念 SVM实现过程 SVM核心 ...
- 海量数据挖掘MMDS week6: 支持向量机Support-Vector Machines,SVM
http://blog.csdn.net/pipisorry/article/details/49445387 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- SVM支持向量机 详解(含公式推导)
关于SVM的内容,这三位老哥写的都挺好的,内容是互补的,结合他们三位的一起看,就可以依次推导出SVM得公式了. https://www.cnblogs.com/steven-yang/p/565836 ...
- 5. 支持向量机(SVM)软间隔
1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...
- [吴恩达机器学习笔记]12支持向量机1从逻辑回归到SVM/SVM的损失函数
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.1 SVM损失函数 从逻辑回归到支持向量机 为了描述 ...
- 支持向量机SVM介绍
SVM为了达到更好的泛化效果,会构建具有"max-margin"的分类器(如下图所示),即最大化所有类里面距离超平面最近的点到超平面的距离,数学公式表示为$$\max\limits ...
- NLP-特征选择
文本分类之特征选择 1 研究背景 对于高纬度的分类问题,我们在分类之前一般会进行特征降维,特征降维的技术一般会有特征提取和特征选择.而对于文本分类问题,我们一般使用特征选择方法. 特征提取:PCA.线 ...
- 论文笔记(8):BING: Binarized Normed Gradients for Objectness Estimation at 300fps
译文: <基于二值化赋范梯度特征的一般对象估计> 摘要: 通过训练通用的对象估计方法来产生一组候选对象窗口,能够加速传统的滑动窗口对象检测方法.我们观察到一般对象都会有定义完好的封闭轮廓, ...
随机推荐
- 跨平台的C++应用和UI开发库 QT
跨平台的C++应用和UI开发库 QT 运行环境: 授权方式:BSD 软件大小:M 下载量:3912 更新日期:2012-04-05 来源地址: 联系作者:Linux Qt是诺基亚开发的一个跨平 ...
- Linux学习之十一、环境变量的功能
环境变量的功能 可以利用两个命令来查阅,分别是 env 与 export 呢! 范例一:列出目前的 shell 环境下的所有环境变量与其内容. [root@www ~]# env SHELL 告知我们 ...
- #include <mutex>
多线程初级 #include <iostream> #include <thread> #include <windows.h> #include <mute ...
- Redis短结构与分片
本文将介绍两种降低Redis内存占用的方法——使用短结构存储数据和对数据进行分片. 降低Redis内存占用有助于减少创建快照和加载快照所需的时间.提升载入AOF文件和重写AOF文件时的效率.缩短从服务 ...
- C#的Split用法
1.用字符串分隔: using System.Text.RegularExpressions;string str="aaajsbbbjsccc";string[] sArray= ...
- bootstrap-js(4)标签页
实例 标签页(Tab)在 Bootstrap 导航元素 一章中介绍过.通过结合一些 data 属性,您可以轻松地创建一个标签页界面. 通过这个插件您可以把内容放置在标签页或者是胶囊式标签页甚至是下拉菜 ...
- spring框架详解
把之前分享的spring框架整理一份放在这里. 整体架构: Spring是一个轻量级的控制反转(IoC)和面向切面(AOP)的容器框架 框架图(选自:http://docs.spring.io/spr ...
- Android入门——UI(8)——Fragment(2)
先演示一下如何在一个activity中放置两个Fragment,先定义两个Fragment <?xml version="1.0" encoding="utf-8& ...
- NavigationBar--修改返回按钮的标题
UIBarButtonItem *backItem = [[[UIBarButtonItem alloc] init] autorelease]; backItem.title = @"返回 ...
- JVM学习之常见溢出类型
Java堆 所有对象的实例分配都在Java堆上分配内存,堆大小由-Xmx和-Xms来调节,sample如下所示: public class HeapOOM { static class OOMObje ...