盲源分离是指在不知道源信号和信道传输参数的情况下,根据输入信号的统计特性,仅由观测信号恢复出源信号各个独立成分的过程。盲源分离研究的信号模型主要有三种:线性混合模型、卷积混合模型和非线性混合模型。

1、峭度

盲源分离常用的方法是ICA(independent component analysis),而ICA算法又是基于非高斯分布假设的,目标是使得非高斯性最大化。因此了解问题所涉及的变量是不是高斯分布,决定了是否能用ICA算法。

Kurtosis是反映随机变量分布特性的数值统计量,是归一化4阶中心矩。峭度是衡量随机信号特征的四阶量。三阶为斜度。一般的非高斯信号都以峭度斜度来衡量。又称为峰度。

在统计学中,峰度(Kurtosis)衡量实数随机变量概率分布的峰态。峰度高就意味着方差增大是由低频度的大于或小于平均值的极端差值引起的。

根据均值不等式,可以确定出峰度(系数)的取值范围:它的下限不会低于1,上限不会高于数据的个数。

                 

正态分布的峰度(系数)为常数3,均匀分布的峰度(系数)为常数1.8。在统计实践中,我们经常把这两个典型的分布曲线作为评价样本数据序列分布性态的参照。设若先将数据标准化,则峰度(系数)相当于标准化数据序列的四阶中心矩。所以,在相同的标准差下,峰度系数越大,分布就有更多的极端值,那么其余值必然要更加集中在众数周围,其分布必然就更加陡峭。在实际应用中,通常将峰度值做减3处理,使得正态分布的峰度0。

峰度定义为四阶标准矩:

样本峰度计算公式:

Tips on Blind Source Separation的更多相关文章

  1. Evaluation of fast-convergence algorithm for ICA-based blind source separation of real convolutive mixture

    实际卷积混合情况下,基于ICA的盲源分离算法快速收敛性能评估[1]. 提出了一种新的盲源分离算法,该算法将独立分量分析ICA和波束形成BF相结合,通过优化算法来解决盲源分离的低收敛问题.该方法由以下三 ...

  2. 论文翻译:2021_Semi-Blind Source Separation for Nonlinear Acoustic Echo Cancellation

    论文地址:https://ieeexplore.ieee.org/abstract/document/9357975/ 基于半盲源分离的非线性回声消除 摘要: 当使用非线性自适应滤波器时,数值模型与实 ...

  3. 论文翻译:2021_Joint Online Multichannel Acoustic Echo Cancellation, Speech Dereverberation and Source Separation

    论文地址:https://arxiv.53yu.com/abs/2104.04325 联合在线多通道声学回声消除.语音去混响和声源分离 摘要: 本文提出了一种联合声源分离算法,可同时减少声学回声.混响 ...

  4. Direction of Arrival Based Spatial Covariance Model for Blind Sound Source Separation

    基于信号协方差模型DOA的盲声源分离[1]. 在此基础上,作者团队于2018年又发布了一篇文章,采用分级和时间差的空间协方差模型及非负矩阵分解的多通道盲声源分离[2]. 摘要 本文通过对短时傅立叶变换 ...

  5. A Class of Blind Source Extraction Method Using Second-Order Statistics

    基于二阶统计量的盲源提取方法[1]. 文中提出了一系列基于二阶统计量的算法,包括离线BSE和在线BSE算法,可以提取平稳信号和非平稳信号.这些算法中,通过挖掘信号特征,提出了新的打分函数,以及一个无参 ...

  6. 论文翻译:Conv-TasNet: Surpassing Ideal Time–Frequency Magnitude Masking for Speech Separation

    我醉了呀,当我花一天翻译完后,发现已经网上已经有现成的了,而且翻译的比我好,哎,造孽呀,但是他写的是论文笔记,而我是纯翻译,能给读者更多的思想和理解空间,并且还有参考文献,也不错哈,反正翻译是写给自己 ...

  7. paper 119:[转]图像处理中不适定问题-图像建模与反问题处理

    图像处理中不适定问题 作者:肖亮博士 发布时间:09-10-25 图像处理中不适定问题(ill posed problem)或称为反问题(inverse Problem)的研究从20世纪末成为国际上的 ...

  8. {ICIP2014}{收录论文列表}

    This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...

  9. 矩阵分解(rank decomposition)文章代码汇总

    矩阵分解(rank decomposition)文章代码汇总 矩阵分解(rank decomposition) 本文收集了现有矩阵分解的几乎所有算法和应用,原文链接:https://sites.goo ...

随机推荐

  1. linux tomcat开机自启/nginx开机自启

    修改/etc/rc.d/rc.local文件,修改完成后需执行以下指令才能正常自启动 chmod +x /etc/rc.d/rc.local #!/bin/bash # THIS FILE IS AD ...

  2. Fiddler的使用总结

    关于Fiddler的使用过程中的总结: 1. 配置手机抓包的过程,以后再补充 2.使用Fiddler发送请求 1) 第一步 抓取接口,获取请求方式,以及请求参数  2) 第二步 请求接口 点击Exec ...

  3. 【已解决】ArcMap的界面如何恢复默认设置

    解决方案:在C盘内搜索“Normal.mxt”,将它删除,然后重启ArcMap,即可.  效果图:

  4. ArcGIS Engine开发鹰眼图的功能(代码优化篇)

    在上一篇,ArcGIS Engine开发鹰眼图的功能(基础篇) 上一篇的实现效果图如下, 如果仔细观察,会发现一个问题,即在“鹰眼”的区域,只要在红色线框内的注记会被覆盖. 如果红色框包括整张图的话, ...

  5. 1、C#多线程基础理论

    系统为应用程序分配所需的内存以及其他资源,内存和资源的物理分离叫做进程.   进程是以线程为单位竞争CPU,那么什么是线程呢? 线程可看成一个可执行的指令单元,他使用进程中的数据,包含若干条指令,进程 ...

  6. Charles配置https

    1. 安装Charles ,破解将Charles.jar 覆盖安装路径的\lib 中的文件 2. 查看本机IP 3. 设置手机代理 4. 设置: 5. 手机安装证书 手机浏览器输入网址:chls.pr ...

  7. 2019 钢银java面试笔试题 (含面试题解析)

    本人3年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条. 钢银等公司offer,岗位是Java后端开发,最终选择去了 钢银. 面试了很多家公司,感觉大部分公司考察的点都差 ...

  8. Django:RestFramework之-------渲染器

    12.渲染器 from rest_framework.renderers import JSONRenderer,BrowsableAPIRenderer,AdminRenderer class Te ...

  9. data:image/png;base64应用

    原文:https://blog.csdn.net/deng_xj/article/details/93731850 data:image/png;base64应用 我们知道任何图片都可以通过base6 ...

  10. weblogic unable to get file lock问题

    非正常结束weblogic进程导致weblogic无法启动 由于先前服务器直接down掉了,所有进程都非正常的进行关闭了,也就导致了下次启动weblogic的时候报了以下错误: <2012-3- ...