题意

给出 $n$ 个整数,从中选出1个或多个,使得选出的整数乘积是完全平方数。一共有多少种选法?($1 \leq n \leq 100$,$1 \leq a_i \leq 10^{15}$ 且不含大于500的素因子)

分析

“不含大于500的素因子”提示我们考虑每个数的素因数分解,用01向量表示一个数,再用 $n$ 个01变量 $x_i$ 来表示我们的选择,其中 $x_i=1$ 表示要选第 $i$ 个数,$x_i=0$ 表示不选第 $i$ 个数,则对每个素数的幂列出一个模2的方程。

如果要让这个数是完全平方数,每个幂都应该是偶数,即模2为0.

在模2的剩余系中每个数都是0/1,加法可换成异或,于是就成了一个异或方程组。

xor方程组很好消元的,因为不需要做乘法和除法,只需要做xor;每次也不需要找绝对值最大的系数(因为系数不是0就是1,只需系数为1即可消元)

设自由变量为 $r$,则最终答案为 $2^r-1$,减1是因为本题不允许一个整数都不选。

#include<bits/stdc++.h>
using namespace std; typedef long long ll;
const int maxn = + ; typedef int Matrix[maxn][maxn]; //m个方程,n个变量
int Rank(Matrix A, int m, int n) //求矩阵的秩
{
int i = , j = , k, r, u;
while(i < m && j < n) //当前正在处理第i个方程的第j个变量
{
r = i;
for(k = i;k < m;k++)
if(A[k][j]){r =k; break;}
if(A[r][j])
{
if(r != i) for(k = ; k <= n;k++) swap(A[r][k], A[i][k]);
for(u = i+; u < m;u++) if(A[u][j])
for(k = i;k <= n;k++) A[u][k] ^= A[i][k];
i++;
}
j++;
}
return i;
} //返回n以内素数的个数
//埃氏筛法O(nloglogn)
const int maxs = + ;
int prime[maxs]; //prime[i]表示第i个素数
bool is_prime[maxs + ]; //is_prime[i]为true表示i是素数 int sieve(int n)
{
int cnt = ;
for (int i = ; i <= n; i++) is_prime[i] = true;
is_prime[] = is_prime[] = false;
for (int i = ; i <= n; i++)
{
if (is_prime[i])
{
prime[cnt++] = i;
for (int j = i * i; j <= n; j += i) is_prime[j] = false; //i * i可能爆int
}
}
return cnt;
} Matrix A; int main()
{
int m = sieve(); int T;
scanf("%d", &T);
while(T--)
{
int n, max_p=;
ll x;
scanf("%d", &n);
memset(A, , sizeof(A)); //记得置零
for(int i = ;i < n;i++)
{
scanf("%lld", &x);
for(int j = ;j < m;j++)
{
while(x % prime[j] == )
{
max_p = max(max_p, j);
x /= prime[j];
A[j][i] ^= ;
}
}
}
int r = Rank(A, max_p+, n);
printf("%lld\n", (1LL << (n-r))-);
}
return ;
}

From:

《算法竞赛入门经典训练指南》——刘汝佳、陈锋著

UVa11542Squre——异或方程组&&高斯消元法的更多相关文章

  1. poj1222(高斯消元法解异或方程组+开关问题)

    题目链接:https://vjudge.net/problem/POJ-1222 题意:给定一个5×6的01矩阵,改变一个点的状态时它上下左右包括它自己的状态都会翻转,因为翻转2次等价与没有翻转,那么 ...

  2. bzoj千题计划105:bzoj3503: [Cqoi2014]和谐矩阵(高斯消元法解异或方程组)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3503 b[i][j] 表示i对j是否有影响 高斯消元解异或方程组 bitset优化 #include ...

  3. 高斯消元法求解异或方程组: cojs.tk 539.//BZOJ 1770 牛棚的灯

    高斯消元求解异或方程组: 比较不错的一篇文章:http://blog.sina.com.cn/s/blog_51cea4040100g7hl.html cojs.tk  539. 牛棚的灯 ★★☆   ...

  4. 【poj1830-开关问题】高斯消元求解异或方程组

    第一道高斯消元题目~ 题目:有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关 ...

  5. 【HDU 5833】Zhu and 772002(异或方程组高斯消元)

    300个最大质因数小于2000的数,选若干个它们的乘积为完全平方数有多少种方案. 合法方案的每个数的质因数的个数的奇偶值异或起来为0. 比如12=2^2*3,对应的奇偶值为01(2的个数是偶数为0,3 ...

  6. 小游戏 Lights Out (关灯) 的求解 —— 异或方程组

    Author : Evensgn  Blog Link : http://www.cnblogs.com/JoeFan/ Article Link : http://www.cnblogs.com/J ...

  7. hdu 5833 Zhu and 772002 异或方程组高斯消元

    ccpc网赛卡住的一道题 蓝书上的原题 但是当时没看过蓝书 今天又找出来看看 其实也不是特别懂 但比以前是了解了一点了 主要还是要想到构造异或方程组 异或方程组的消元只需要xor就好搞了 数学真的是硬 ...

  8. bzoj千题计划187:bzoj1770: [Usaco2009 Nov]lights 燈 (高斯消元解异或方程组+枚举自由元)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1770 a[i][j] 表示i对j有影响 高斯消元解异或方程组 然后dfs枚举自由元确定最优解 #in ...

  9. BZOJ.1923.[SDOI2010]外星千足虫(高斯消元 异或方程组 bitset)

    题目链接 m个方程,n个未知量,求解异或方程组. 复杂度比较高,需要借助bitset压位. 感觉自己以前写的(异或)高斯消元是假的..而且黄学长的写法都不需要回代. //1100kb 324ms #i ...

随机推荐

  1. 图解分布式一致性协议Paxos

    Paxos协议/算法是分布式系统中比较重要的协议,它有多重要呢? <分布式系统的事务处理>: Google Chubby的作者Mike Burrows说过这个世界上只有一种一致性算法,那就 ...

  2. Django-10-分页组件

    1. Django内置分页 from django.shortcuts import render from django.core.paginator import Paginator, Empty ...

  3. mysql 注意小结

    char 默认是1 个字符 char(12) 设置是12个字符 不管是中文还是英文或者数字只能有十二个 设置外键时,这时候外键对应的父键的字段要是主键 非空而且是唯一. create table t1 ...

  4. Expected linebreaks to be 'LF' but found 'CRLF'.

    解决方法 在rules中加入 "linebreak-style": [0 ,"error", "windows"], 如果你需要知道原理,请 ...

  5. 【题解】Luogu P5290 [十二省联考2019]春节十二响

    原题传送门 每个点维护一个堆,表示这个点及其子树所需的每段内存的空间 搜索时从下向上做启发式合并堆中信息,最后根节点堆中所有内存空间之和就是答案 #include <bits/stdc++.h& ...

  6. 20、Outer Apply 和 Cross Apply

    1.場合 select...caseが複雑の時 2.運用方法 SELECT * FROM stu CROSS APPLY ( --like inner join * FROM score WHERE ...

  7. C#泛型集合之——哈希集合

    1.特点:HashSet 中元素不重复,容量为元素个数,自动增大.是一组值,是高性能的数学集合. 2.创建: (1)HashSet<类型> 集合名 = new HashSet<类型& ...

  8. deppin Linux下安装docker

    首先楼主用的是deppin15.11 docker 简介:Docker作为一个软件集装箱化平台,可以让开发者构建应用程序时,将它与其依赖环境一起打包到一个容器中,然后很容易地发布和应用到任意平台中. ...

  9. Redis笔记01——win10 64位系统安装Redis 3.2.100

    前言 由于项目中需要用到Redis,所以先在自己的win10上安装来体验一下. 安装步骤 一.下载地址 Redis下载地址 我选择的是3.2.100 的 64位 zip版本 二.安装位置以及文件简介 ...

  10. nodejs中的_filename和_dirname

    _filename和_dirname都不是全局对象下的属性,它们都是模块下的 _filename:返回当前模块文件被解析过后的绝对路径,该属性并非全局,而是模块作用域下的 console.log(_f ...