Go Slices: usage and internals

Introduction

Go's slice type provides a convenient and efficient means of working with sequences of typed data. Slices are analogous to arrays in other languages, but have some unusual properties. This article will look at what slices are and how they are used.

Arrays

The slice type is an abstraction built on top of Go's array type, and so to understand slices we must first understand arrays.

An array type definition specifies a length and an element type. For example, the type [4]int represents an array of four integers. An array's size is fixed; its length is part of its type ([4]int and [5]int are distinct, incompatible types). Arrays can be indexed in the usual way, so the expression s[n] accesses the nth element, starting from zero.

var a [4]int
a[0] = 1
i := a[0]
// i == 1

Arrays do not need to be initialized explicitly; the zero value of an array is a ready-to-use array whose elements are themselves zeroed:

// a[2] == 0, the zero value of the int type

The in-memory representation of [4]int is just four integer values laid out sequentially:

Go's arrays are values. An array variable denotes the entire array; it is not a pointer to the first array element (as would be the case in C). This means that when you assign or pass around an array value you will make a copy of its contents. (To avoid the copy you could pass a pointer to the array, but then that's a pointer to an array, not an array.) One way to think about arrays is as a sort of struct but with indexed rather than named fields: a fixed-size composite value.

An array literal can be specified like so:

b := [2]string{"Penn", "Teller"}

Or, you can have the compiler count the array elements for you:

b := [...]string{"Penn", "Teller"}

In both cases, the type of b is [2]string.

Slices

Arrays have their place, but they're a bit inflexible, so you don't see them too often in Go code. Slices, though, are everywhere. They build on arrays to provide great power and convenience.

The type specification for a slice is []T, where T is the type of the elements of the slice. Unlike an array type, a slice type has no specified length.

A slice literal is declared just like an array literal, except you leave out the element count:

letters := []string{"a", "b", "c", "d"}

A slice can be created with the built-in function called make, which has the signature,

func make([]T, len, cap) []T

where T stands for the element type of the slice to be created. The make function takes a type, a length, and an optional capacity. When called, make allocates an array and returns a slice that refers to that array.

var s []byte
s = make([]byte, 5, 5)
// s == []byte{0, 0, 0, 0, 0}

When the capacity argument is omitted, it defaults to the specified length. Here's a more succinct version of the same code:

s := make([]byte, 5)

The length and capacity of a slice can be inspected using the built-in len and cap functions.

len(s) == 5
cap(s) == 5

The next two sections discuss the relationship between length and capacity.

The zero value of a slice is nil. The len and cap functions will both return 0 for a nil slice.

A slice can also be formed by "slicing" an existing slice or array. Slicing is done by specifying a half-open range with two indices separated by a colon. For example, the expression b[1:4] creates a slice including elements 1 through 3 of b (the indices of the resulting slice will be 0 through 2).

b := []byte{'g', 'o', 'l', 'a', 'n', 'g'}
// b[1:4] == []byte{'o', 'l', 'a'}, sharing the same storage as b

The start and end indices of a slice expression are optional; they default to zero and the slice's length respectively:

// b[:2] == []byte{'g', 'o'}
// b[2:] == []byte{'l', 'a', 'n', 'g'}
// b[:] == b

This is also the syntax to create a slice given an array:

x := [3]string{"Лайка", "Белка", "Стрелка"}
s := x[:] // a slice referencing the storage of x

Slice internals

A slice is a descriptor of an array segment. It consists of a pointer to the array, the length of the segment, and its capacity (the maximum length of the segment).

Our variable s, created earlier by make([]byte, 5), is structured like this:

The length is the number of elements referred to by the slice. The capacity is the number of elements in the underlying array (beginning at the element referred to by the slice pointer). The distinction between length and capacity will be made clear as we walk through the next few examples.

As we slice s, observe the changes in the slice data structure and their relation to the underlying array:

s = s[2:4]

Slicing does not copy the slice's data. It creates a new slice value that points to the original array. This makes slice operations as efficient as manipulating array indices. Therefore, modifying the elements (not the slice itself) of a re-slice modifies the elements of the original slice:

d := []byte{'r', 'o', 'a', 'd'}
e := d[2:]
// e == []byte{'a', 'd'}
e[1] = 'm'
// e == []byte{'a', 'm'}
// d == []byte{'r', 'o', 'a', 'm'}

Earlier we sliced s to a length shorter than its capacity. We can grow s to its capacity by slicing it again:

s = s[:cap(s)]

A slice cannot be grown beyond its capacity. Attempting to do so will cause a runtime panic, just as when indexing outside the bounds of a slice or array. Similarly, slices cannot be re-sliced below zero to access earlier elements in the array.

Growing slices (the copy and append functions)

To increase the capacity of a slice one must create a new, larger slice and copy the contents of the original slice into it. This technique is how dynamic array implementations from other languages work behind the scenes. The next example doubles the capacity of s by making a new slice, t, copying the contents of s into t, and then assigning the slice value t to s:

t := make([]byte, len(s), (cap(s)+1)*2) // +1 in case cap(s) == 0
for i := range s {
t[i] = s[i]
}
s = t

The looping piece of this common operation is made easier by the built-in copy function. As the name suggests, copy copies data from a source slice to a destination slice. It returns the number of elements copied.

func copy(dst, src []T) int

The copy function supports copying between slices of different lengths (it will copy only up to the smaller number of elements). In addition, copy can handle source and destination slices that share the same underlying array, handling overlapping slices correctly.

Using copy, we can simplify the code snippet above:

t := make([]byte, len(s), (cap(s)+1)*2)
copy(t, s)
s = t

A common operation is to append data to the end of a slice. This function appends byte elements to a slice of bytes, growing the slice if necessary, and returns the updated slice value:

func AppendByte(slice []byte, data ...byte) []byte {
m := len(slice)
n := m + len(data)
if n > cap(slice) { // if necessary, reallocate
// allocate double what's needed, for future growth.
newSlice := make([]byte, (n+1)*2)
copy(newSlice, slice)
slice = newSlice
}
slice = slice[0:n]
copy(slice[m:n], data)
return slice
}

One could use AppendByte like this:

p := []byte{2, 3, 5}
p = AppendByte(p, 7, 11, 13)
// p == []byte{2, 3, 5, 7, 11, 13}

Functions like AppendByte are useful because they offer complete control over the way the slice is grown. Depending on the characteristics of the program, it may be desirable to allocate in smaller or larger chunks, or to put a ceiling on the size of a reallocation.

But most programs don't need complete control, so Go provides a built-in append function that's good for most purposes; it has the signature

func append(s []T, x ...T) []T

The append function appends the elements x to the end of the slice s, and grows the slice if a greater capacity is needed.

a := make([]int, 1)
// a == []int{0}
a = append(a, 1, 2, 3)
// a == []int{0, 1, 2, 3}

To append one slice to another, use ... to expand the second argument to a list of arguments.

a := []string{"John", "Paul"}
b := []string{"George", "Ringo", "Pete"}
a = append(a, b...) // equivalent to "append(a, b[0], b[1], b[2])"
// a == []string{"John", "Paul", "George", "Ringo", "Pete"}

Since the zero value of a slice (nil) acts like a zero-length slice, you can declare a slice variable and then append to it in a loop:

// Filter returns a new slice holding only
// the elements of s that satisfy fn()
func Filter(s []int, fn func(int) bool) []int {
var p []int // == nil
for _, v := range s {
if fn(v) {
p = append(p, v)
}
}
return p
}

A possible "gotcha"

As mentioned earlier, re-slicing a slice doesn't make a copy of the underlying array. The full array will be kept in memory until it is no longer referenced. Occasionally this can cause the program to hold all the data in memory when only a small piece of it is needed.

For example, this FindDigits function loads a file into memory and searches it for the first group of consecutive numeric digits, returning them as a new slice.

var digitRegexp = regexp.MustCompile("[0-9]+")

func FindDigits(filename string) []byte {
b, _ := ioutil.ReadFile(filename)
return digitRegexp.Find(b)
}

This code behaves as advertised, but the returned []byte points into an array containing the entire file. Since the slice references the original array, as long as the slice is kept around the garbage collector can't release the array; the few useful bytes of the file keep the entire contents in memory.

To fix this problem one can copy the interesting data to a new slice before returning it:

func CopyDigits(filename string) []byte {
b, _ := ioutil.ReadFile(filename)
b = digitRegexp.Find(b)
c := make([]byte, len(b))
copy(c, b)
return c
}

A more concise version of this function could be constructed by using append. This is left as an exercise for the reader.

Further Reading

Effective Go contains an in-depth treatment of slices and arrays, and the Go language specification defines slices and their associated helper functions.

golang ----array and slice的更多相关文章

  1. Golang高效实践之array、slice、map

    前言 Golang的slice类型为连续同类型数据提供了一个方便并且高效的实现方式.slice的实现是基于array,slice和map一样是类似于指针语义,传递slice和map并不涉及底层数据结构 ...

  2. 【javascript 技巧】Array.prototype.slice的妙用

    Array.prototype.slice的妙用 开门见山,关于Array 的slice的用法可以参考这里 http://www.w3school.com.cn/js/jsref_slice_arra ...

  3. Array.prototype.slice.call(arguments)

    Array.prototype.slice.call(arguments)能够将具有length属性的对象转化为数组, 可以理解为将arguments转化成一个数组对象,让它具有slice方法 如: ...

  4. IE下Array.prototype.slice.call(params,0)

    i8 不支持 Array.prototype.slice.call(params,0) params可以是 HTMLCollection.类数组.string字符串

  5. (转)Array.prototype.slice.call自解

    很多框架或者库里面都会有这句的使用,最多的还是通过Array.prototype.slice.call(arguments,0)把arguments这个伪数组转换为真正的数组.但为什么可以这么做,却一 ...

  6. 详解 Array.prototype.slice.call(arguments)

    首先,slice有两个用法,一个是String.slice,一个是Array.slice,第一个返回的是字符串,第二个返回的是数组 在这里我们看第二个方法 1.在JS里Array是一个类 slice是 ...

  7. Array.prototype.slice && Array.prototype.splice 用法阐述

    目的 对于这两个数组操作接口,由于不理解, 往往被误用, 或者不知道如何使用.本文尝试给出容易理解的阐述. 数组 什么是数组? 数组是一个基本的数据结构, 是一个在内存中依照线性方式组织元素的方式, ...

  8. Array.prototype.slice.call(document.querySelectorAll('a'), 0)

    Array.prototype.slice.call(document.querySelectorAll('a'), 0)的作用就是将一个DOM NodeList 转换成一个数组. slice()方法 ...

  9. Array.prototype.slice.call

    Array.prototype.slice.call(arguments)能将具有length属性的对象转成数组 ,::'age'}; Array.prototype.slice.call(arr); ...

随机推荐

  1. golang多个项目时如何配置GOPATH,使用gb包依赖管理工具,不同项目配置不同的GOPATH的

    golang多个项目时如何配置GOPATH,使用gb包依赖管理工具,不同项目配置不同的GOPATH的 1:执行脚本setGoPath.sh#!/bin/bashif [[ $GOPATH =~ .*$ ...

  2. React Router 4.0 体验

    React Router 4.0 (以下简称 RR4) 已经正式发布,它遵循React的设计理念,即万物皆组件.所以 RR4 只是一堆 提供了导航功能的组件(还有若干对象和方法),具有声明式(声明式编 ...

  3. pipenv管理python开发环境

    简介 简单说,pipenv就是把pip和virtualenv包装起来的一个便携工具. 它不会在你的项目文件夹里生成一大堆东西,只有两个文本文件: Pipfile, 简明地显示项目环境和依赖包. Pip ...

  4. BitTorrent协议与MagNet协议原理【转】

    转自:https://blog.csdn.net/u012785382/article/details/70674875 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog ...

  5. 如何下载Youtube的4K视频?这里有4款软件, 哪个适合你?

    数字电影的最新分辨率标准是4k,4K分辨率的视频具有高图像清晰度质量.更好的快速动作.更大的投影表面可见度和更详细的图像质量等优点,受到了广大视频爱好者的好评.作为当前最火热的视频分享网站,YouTu ...

  6. 【洛谷P3973】[TJOI2015]线性代数(最小割)

    洛谷 题意: 给出一个\(n*n\)的矩阵\(B\),再给出一个\(1*n\)的矩阵\(C\). 求一个\(1*n\)的\(01\)矩阵\(A\),使得\(D=(A\cdot B-C)\cdot A^ ...

  7. 交换机与MPLS

    在这一篇里面主要阐述交换机与MPLS的相似点.

  8. 201871010128-杨丽霞《面向对象程序设计(java)》第七周学习总

    201871010128-杨丽霞-<面向对象程序设计(java)>第七周学习总结 项目 内容 这个作业属于哪个课程  https://www.cnblogs.com/nwnu-daizh/ ...

  9. day33_8_15 并发编程4,线程池与协程,io模型

    一.线程池 线程池是一个处理线程任务的集合,他是可以接受一定量的线程任务,并创建线程,处理该任务,处理结束后不会立刻关闭池子,会继续等待提交的任务,也就是他们的进程/线程号不会改变. 当线程池中的任务 ...

  10. Linux下Maven安装(十二)

    一.前提条件 下载并安装好JDK .在终端输入命令“java -version”,如果出现类似如下信息说明JDK安装成功. 二.开始配置Maven 1. 下载maven:http://mirror.b ...