马氏距离有多重定义:

1)可以表示 某一个样本与DataSet的距离。

2)可以表示两个DataSet之间的距离。

1) The Mahalanobis distance of an observation {\displaystyle {\vec {x}}=(x_{1},x_{2},x_{3},\dots ,x_{N})^{T}} from a set of observations with mean {\displaystyle {\vec {\mu }}=(\mu _{1},\mu _{2},\mu _{3},\dots ,\mu _{N})^{T}} and covariance matrix S is defined as:

Intuitive explanation

Consider the problem of estimating the probability that a test point in N-dimensional Euclidean space belongs to a set, where we are given sample points that definitely belong to that set. Our first step would be to find the average or center of mass of the sample points. Intuitively, the closer the point in question is to this center of mass, the more likely it is to belong to the set.

However, we also need to know if the set is spread out over a large range or a small range, so that we can decide whether a given distance from the center is noteworthy or not. The simplistic approach is to estimate the standard deviation of the distances of the sample points from the center of mass. If the distance between the test point and the center of mass is less than one standard deviation, then we might conclude that it is highly probable that the test point belongs to the set. The further away it is, the more likely that the test point should not be classified as belonging to the set.

This intuitive approach can be made quantitative by defining the normalized distance between the test point and the set to be {\displaystyle {x-\mu } \over \sigma }. By plugging this into the normal distribution we can derive the probability of the test point belonging to the set.

The drawback of the above approach was that we assumed that the sample points are distributed about the center of mass in a spherical(圆) manner. Were the distribution to be decidedly non-spherical, for instance ellipsoidal, then we would expect the probability of the test point belonging to the set to depend not only on the distance from the center of mass, but also on the direction. In those directions where the ellipsoid has a short axis the test point must be closer, while in those where the axis is long the test point can be further away from the center.

Putting this on a mathematical basis, the ellipsoid that best represents the set's probability distribution can be estimated by building the covariance matrix of the samples. The Mahalanobis distance is the distance of the test point from the center of mass divided by the width of the ellipsoid in the direction of the test point.

2)Mahalanobis distance can also be defined as a dissimilarity measure between two random vectors {\displaystyle {\underline {x}}} and {\displaystyle {\underline {y}}} of the same distribution with the covariance matrix S:

{\displaystyle d({\vec {x}},{\vec {y}})={\sqrt {({\vec {x}}-{\vec {y}})^{T}S^{-1}({\vec {x}}-{\vec {y}})}}.\,}

If the covariance matrix is the identity matrix, the Mahalanobis distance reduces to the Euclidean distance. If the covariance matrix is diagonal, then the resulting distance measure is called a standardized Euclidean distance:

{\displaystyle d({\vec {x}},{\vec {y}})={\sqrt {\sum _{i=1}^{N}{(x_{i}-y_{i})^{2} \over s_{i}^{2}}}},}

where si is the standard deviation of the xi and yi over the sample set.

References:

http://people.revoledu.com/kardi/tutorial/Similarity/MahalanobisDistance.html

https://en.wikipedia.org/wiki/Mahalanobis_distance

Mahalanobia Distance(马氏距离)的解释的更多相关文章

  1. paper 114:Mahalanobis Distance(马氏距离)

    (from:http://en.wikipedia.org/wiki/Mahalanobis_distance) Mahalanobis distance In statistics, Mahalan ...

  2. Mahalanobis Distance(马氏距离)

    (from:http://en.wikipedia.org/wiki/Mahalanobis_distance) Mahalanobis distance In statistics, Mahalan ...

  3. 马氏距离(Mahalanobis distance)

    马氏距离(Mahalanobis distance)是由印度统计学家马哈拉诺比斯(P. C. Mahalanobis)提出的,表示数据的协方差距离.它是一种有效的计算两个未知样本集的相似度的方法.与欧 ...

  4. MATLAB求马氏距离(Mahalanobis distance)

    MATLAB求马氏距离(Mahalanobis distance) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1.马氏距离计算公式 d2(xi,  ...

  5. Mahalanobis距离(马氏距离)的“哲学”解释

    讲解教授:赵辉 (FROM : UESTC) 课程:<模式识别> 整理:PO主 基础知识: 假设空间中两点x,y,定义: 欧几里得距离, Mahalanobis距离, 不难发现,如果去掉马 ...

  6. 有关马氏距离和hinge loss的学习记录

    关于度量学习,之前没有看太多相关的文献.不过南京的周老师的一篇NIPS,确实把这个问题剖析得比较清楚. Mahalanobis距离一般表示为d=(x-y)TM(x-y),其中x和y是空间中两个样本点, ...

  7. 基于欧氏距离和马氏距离的异常点检测—matlab实现

    前几天接的一个小项目,基于欧氏距离和马氏距离的异常点检测,已经交接完毕,现在把代码公开. 基于欧式距离的: load data1.txt %导入数据,行为样本,列为特征 X=data1; %赋值给X ...

  8. Python实现的计算马氏距离算法示例

    Python实现的计算马氏距离算法示例 本文实例讲述了Python实现的计算马氏距离算法.分享给大家供大家参考,具体如下: 我给写成函数调用了 python实现马氏距离源代码:     # encod ...

  9. Levenshtein Distance莱文斯坦距离算法来计算字符串的相似度

    Levenshtein Distance莱文斯坦距离定义: 数学上,两个字符串a.b之间的莱文斯坦距离表示为levab(|a|, |b|). levab(i, j) = max(i, j)  如果mi ...

随机推荐

  1. 1.zookeeper是干什么的?

    Zookeeper是Hadoop的一个子项目,虽然源自hadoop,但是我发现zookeeper脱离hadoop的范畴开发分布式框架的运用越来越多.今天我想谈谈zookeeper,本文不谈如何使用zo ...

  2. @getMapping和@postMapping,@RestController 区别

    @getMapping和@postMapping,@RestController   @RequestMapping   和  @GetMapping @PostMapping 区别 @GetMapp ...

  3. SpringBoot源码分析-编译环境与新建测试模块

    建议 分析源码建议不要使用Idea或者Eclipse等IDE工具的反编译功能或者导入源码包的方式看源码,那样不能给框架的源码做注释,所以分析源码之前都得先下载源码并构建,然后在项目中新建一个Modul ...

  4. python基础知识总结大全(转载)

  5. Android入门教程(四)

    关注我,每天都有优质技术文章推送,工作,学习累了的时候放松一下自己. 本篇文章同步微信公众号 欢迎大家关注我的微信公众号:「醉翁猫咪」 学习Android要掌握Android程序结构,和通信技术,和如 ...

  6. Kerberos(一) 安装

    1.服务器基本信息 操作系统:centos7 数量:2 主机名映射关系 IP hostname server 192.168.4.50 manager1 Kerberos server(kdc) 19 ...

  7. Mysql 之根据经纬度按距离排序

    一.方式一 st_distance 计算的结果单位是度,需要乘111195(地球半径6371000*PI/180)是将值转化为米. SELECT *, (st_distance(point(lng,l ...

  8. Fluent Meshing对称模型形成完整模型

    原视频下载地址:https://pan.baidu.com/s/1i4NZnVZ 密码:ts5a

  9. java.lang.Thread类的静态方法sleep()和yield()的比较

    [线程让步yield()方法] yield()方法可以让当前正在执行的线程暂停,但它不会阻塞该线程,它只是将该线程从运行状态转入就绪状态. 只是让当前的线程暂停一下,让系统的线程调度器重新调度一次. ...

  10. 使用建造者模式和Lombok简化代码

    在项目开发中,我们经常需要构建对象.常见的做法有getter/setter,或者构造器构建对象. 可能会有人写出类似如下的代码: Company company=new Company(); comp ...