【JZOJ6233】【20190627】心的旋律
题目
你需要构造一个\(n\)个点的二分图
定义\(F(A)\)表示左部点集\(A\)能够到达的右部中的点
使得满足 $ F(A) \lt |A| $ 的集合恰好有 $ k $ 个
\(1 \le n \le 32 \ , \ 0 \le k \le 2^n\)
题解
当$A = \emptyset $ 时满足\(F(A) \lt |A|\) ,当\(k = 2^n\)时无解
下面都考虑构造满足\(F(A) \ge |A|\) 的个数为\(k \ = \ 2^n - k\)
另\(F_{i+1}\)表示第\(i\)个点的F集合,令$ F_{i+1} \supset F_{i} $ ,记\(d_i = |F_{i}|\),即\(d_{i+1}-d_i = 0 / 1\)
那么结论是$d_i $的 \(2^n\) 个取值恰好一一对应了$ 1 \to 2 ^ n $ 的 $ k $ 值
并且存在一个更强的结论
%20pdf.png)
证明:
考虑如何计算一个\(d_i\)的方案:\[\begin{align}
F&= \sum_{i=1}^{n} \sum_{j=1}^{d_i}(^{i-1}_{j-1})\\
&= \sum_{i=1}^{m} (^n_i) - (^{B_i - 1}_{\ \ \ i}) \\
\end{align}
\]记 $ d_i =1 $ 的位置为 $ B_ 1 \ , \ \cdots \ , \ B_m $ ,只需要证明
(注意组合数的一个竖列和主对角线求和是可化简的)
*1.若\(m_1 \lt m_2\) ,则\(F_1 \lt F_2\)
不妨考虑\(m , m + 1\) \(m \lt n\)
$F_{m+1} - F_{m} \ge (^n _m) - [ (^{n-m}_1 )+ ({n-m-1}_2)+\cdots+({n-1}_m) ] = (^{n-m-1}_0) \ge 1 $
由于前一半是和\(B_i\)独立的,所以多加一位的贡献可以覆盖后一半的贡献
*2.\(m_1=m_2\),记\(d_i\)形成的二进制数\(D1 \gt D2\) ,则\(F_1 \lt F_2\)
不妨考虑二进制位\(i\)和\(i+1\)的贡献 \((i \ge m)\)
\(F_{i} - F_{i+1} \ge (^i_m) - [(^{i-m}_1) +\cdots + (^{i-2}_{m-1}) + (^{i-1}_m) ] = (^{i-m}_0) \ge 1\)
说明二进制位不同可以覆盖后面所有二进制位的贡献
可以说明上面的所有结论
Code
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=33;
typedef pair<ll,ll>pii;
int n,d[N];ll K,C[N][N];
pii a[N];
int main(){
freopen("circle.in","r",stdin);
freopen("circle.out","w",stdout);
scanf("%d%lld",&n,&K);
K=(1ll<<n)-K;
if(!K)puts("-1"),exit(0);
int cnt=0;
for(int i=0;i<=n;++i)C[i][0]=1;
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)C[i][j]=C[i-1][j-1]+C[i-1][j];
for(cnt=0;C[n][cnt]<K;K-=C[n][cnt++]);
for(int i=n,now=0;i&&now<cnt;--i){
if(C[i-1][cnt-now-1]<K)K-=C[i-1][cnt-now-1];
else now++,d[i]=1;
}
for(int i=1;i<=n;++i)d[i]+=d[i-1];
for(int i=1;i<=n;++i,puts(""))
for(int j=1;j<=n;++j)printf(j<=d[i]?"1 ":"0 ");
return 0;
}
【JZOJ6233】【20190627】心的旋律的更多相关文章
- pygame系列_原创百度随心听音乐播放器_完整版
程序名:PyMusic 解释:pygame+music 之前发布了自己写的小程序:百度随心听音乐播放器的一些效果图 你可以去到这里再次看看效果: pygame系列_百度随心听_完美的UI设计 这个程序 ...
- 【breathandlife】气势磅礴、比较好听的旋律有哪些?
[breathandlife]气势磅礴.比较好听的旋律有哪些? 分享:yunbest作者:来源:2015-10-26 专题:breathandlife [breathandlife]气势磅礴.比较好听 ...
- [deviceone开发]-心形点赞动画示例
一.简介 这个示例展示do_Animator组件的简单使用,通过点击"点赞"按钮,不断弹出心形图片,向上动画漂移到顶部消失.间隔时间和上下左右移动的步长都是一定范围的随机值.二.效 ...
- BZOJ 后缀自动机四·重复旋律7
后缀自动机四·重复旋律7 时间限制:15000ms 单点时限:3000ms 内存限制:512MB 描述 小Hi平时的一大兴趣爱好就是演奏钢琴.我们知道一段音乐旋律可以被表示为一段数构成的数列. 神奇的 ...
- WPF 如何画一颗心
如何用WPF画一个心. MainWindow.xaml <Window x:Class="Heart.MainWindow" xmlns="http://schem ...
- 你的眼睛背叛你的心:解决 .NET Core 中 GetHostAddressesAsync 引起的 EnyimMemcached 死锁问题
在我们将站点从 ASP.NET + Windows 迁移至 ASP.NET Core + Linux 的过程中,目前遇到的最大障碍就是 —— 没有可用的支持 .NET Core 的 memcached ...
- fir.im Weekly - 暖心的 iOS 持续集成,你值得拥有
一则利好消息,flow.ci 支持 iOS 项目持续集成,想试试的伙伴去 Gitter群 问问.首批尝鲜用户@阿米amoy 已经用 flow.ci 实现了基本的 iOS 持续集成,并详细记录整个 Bu ...
- CSS3制作心形头像
1.功能需求: 最近有一个基于微信开发的Mobile Web项目,是一个活动页面.功能需求:用户使用微信扫描二维码,然后授权使用微信登录,然后读取用户的昵称和头像,然后显示在一个饼图上面.头像需要有一 ...
- 如何用Python实现杨辉三角和心
1. 如何实现杨辉三角 import copy list=[] newlist=[] def Fibonacci(list,n): newlist.append(0) if n ==1: return ...
随机推荐
- WPF设置全局控件样式
原文:WPF设置全局控件样式 方法: 在资源文件APP.XAML中添加如下资源 <Application x:Class="_360UI.App" xmlns="h ...
- C#桌面程序启动时传入参数
using System;using System.Collections.Generic;using System.Linq;using System.Windows.Forms; namespac ...
- C# vb .NET读取识别条形码线性条码ean-8
ean-8是比较常见的条形码编码规则类型的一种.如何在C#,vb等.NET平台语言里实现快速准确读取该类型条形码呢?答案是使用SharpBarcode! SharpBarcode是C#快速高效.准确的 ...
- Golang 是否有必要内存对齐?
原文:https://ms2008.github.io/2019/08/01/golang-memory-alignment/ 内存模型 Posted by ms2008 on August 1, 2 ...
- Nginx中的$document_uri与$request_uri以及$http_referer
Nginx基于$document_uri的访问控制,变量$document_uri该变量等价于$uri,其实也等价于location匹配. 示例1: 当用户请求的url中包含/admin/时,直接返回 ...
- React Context API
使用React 开发程序的时候,组件中的数据共享是通过数据提升,变成父组件中的属性,然后再把属性向下传递给子组件来实现的.但当程序越来越复杂,需要共享的数据也越来越多,最后可能就把共享数据直接提升到最 ...
- 【案例】保健品行业如何优化供应链管理?APS系统来帮忙
仙乐健康一直致力于为了客户提供世界级的产品及服务,随着业务量的不断扩大,公司先后实施了ERP系统,CRM系统,WMS系统,OA系统,朝着行业信息化水平领先的目标迈进. 但近年仅仅拥有传统ERP系统和手 ...
- Go语言入门——interface
1.Go如何定义interface Go通过type声明一个接口,形如 type geometry interface { area() float64 perim() float64 } 和声明一个 ...
- 解决pip安装时速度慢的问题
http://blog.csdn.net/wukai0909/article/details/62427437 国内源: 新版ubuntu要求使用https源,要注意. 清华:https://py ...
- vimplus基本操作
1. YouCompleteMe按tab键,自动补全 2. vim-commentary添加注释,以及取消注释gcc 注释当前行(普通模式)gc 可视模式下,注释当前选中的部分gcu 撤销上一次注释的 ...