一、什么是numpy

  Numpy提供了一个在Python中做科学计算的基础库,重在数值计算,主要用于处理多维数组(矩阵)的库。用来存储和处理大型矩阵,比Python自身的嵌套列表结构要高效的多。本身是由C语言开发,是个很基础的扩展,Python其余的科学计算扩展大部分都是以此为基础。

二、快速入门numpy库

  1.导入numpy(安装anaconda已带很多科学计算包,无需安装导入即可)

    

    导入画图工具matplotlib,用于数据分析与可视化

    

    打开一张猫的图片,发现计算机眼里,它只是一个数组,这样numpy也就上场了!:

    

  使用type就能发现,他是Numpy的ndarray,使用imshow()可以查看这只可爱的猫:

  

三、创建numpy.ndarray

  1.使用np.array,由python的list创建

    

    多维数组合理:

    

    通过shape查看是几行几列的:

    

    图片的分别为长宽加最后一维:颜色

    

  2.通过rountines函数创建ndarray

      ones:创建指定形状数组,数据元素使用1来填充

    

      使用imshow则可以显示这张图片了:

plt.imshow(n3)

      // zeros同理

    使用其他自定义数字,通过full创建:

    

  通过eye创建对角线矩阵:对角线为1,其他均为0(满秩)

    

  通过linspace创建有规律的数组:(默认取样数量num为50个)

    

    通过arange创建数组,在给定区间创建均匀间隔的值:(左闭右开)

    

    通过randint生成随机数组,例如0到100之间,生成5个数:

      

    通过randn生成一个标准正太分布的数组

    通过normal生成自定义的正太分布(其中loc参数表示拐点,scale表示波动性)

    通过random.random生成0-1左闭右开的随机数组

四、ndarray的基本操作

  1.索引

    和列表完全一致,使用下标取值

    

    多维同理,例如使用randint(0,100,(3,4))创建的3行四列数组,使用n1[0,1]取出第0行第1个

  2.切片

    一维数组与列表切片完全一致,多维同理

    

    多维数组和一维数组是同理的(比如3维数组可以看成元素是2维的1维数组),多维数组的切片,就是三维切哪些,二维切哪些,一维切哪些

    

   使用-1的步长表示反转:n1[::-1]

    3.变形

      使用reshape,传入tuple进行变形操作(多维数组传入负数直接变成一维数组:cat.reshape(-1))

    

    4.级联

     np.concatenate() ,参数是列表(可以传List或者tuple),纬度和形状必须相同,通过axis可以改变级联的方向

    

    使用axis改变级联方向

    

    图片同理:

    

    使用np.hstack与np.vstack进行纬度变更,分别是变成水平与垂直转换,来处理自己

    5.切分

      使用split切分,在索引位置切分,分成多个数组:

      

      

      使用vsplithsplit进行垂直于水平切分:

    6.副本

     需要注意的是所有赋值运算不会给ndarray创建副本,原对象的改变,也会改变ndarray的值(两个ndarray之间赋值,赋值的改变会影响被赋值的对象) ,要使用副本,使用copy:n2 = n1.copy()。否则直接 n2 = n1,n1会影响n2的值

五、ndarray的聚合操作

  可以直接调用ndarray的函数操作,例如求最大最小值:

    

  推荐使用np.max等操作,可以控制对某个轴(axis = 0时是Y轴)求最大值:

    

  其他几个max、min、sum等同理

    

NumPy:数学和统计方法

常用函数:

sum    求和
cumsum 求前缀和
mean 求平均数
std 求标准差
var 求方差
min 求最小值
max 求最大值
argmin 求最小值索引
argmax 求最大值索引

 六、ndarray的矩阵操作

  1.算数运算

    基础的加减乘除(通过基础的 + -等计算符号,或者通过np.add等进行操作)

    

  2.矩阵积dot

    必须是shape相反的,n行m列,乘以m行n列

    

    矩阵乘法原理如下:

    

七、ndarray广播机制

  1)  为缺失元素补1

  2)假定缺失元素用已有值补充

  https://www.cnblogs.com/jiaxin359/p/9021726.html

  例如,一个2行3列的数组与一行3列的数组进行相加,就会有广播机制:

  

 八、ndarray的排序

  1.快速排序

    np.sort():不改变输入

    ndarray.sort():本地处理,不占用空间,但改变输入

    

  2.部分排序

    只取最大的k个值或最小的k个值:np.partition(n,k):k为正时为最小的几个数,k为负时为最大的几个数(但这几个数并没有排序)

    参考:https://blog.csdn.net/qq_37007384/article/details/88668729

    

数据分析入门——numpy的更多相关文章

  1. 数据分析入门——numpy类库基础知识

    numpy类库是数据分析的利器,用于高性能的科学计算和数据分析.使用python进行数据分析,numpy这个类库是必须掌握的.numpy并没有提供强大的数据分析功能,而是它提供的ndarray数据结构 ...

  2. Python数据分析入门

    Python数据分析入门 最近,Analysis with Programming加入了Planet Python.作为该网站的首批特约博客,我这里来分享一下如何通过Python来开始数据分析.具体内 ...

  3. Python数据分析入门之pandas基础总结

    Pandas--"大熊猫"基础 Series Series: pandas的长枪(数据表中的一列或一行,观测向量,一维数组...) Series1 = pd.Series(np.r ...

  4. Python数据分析入门与实践 ✌✌

    Python数据分析入门与实践 (一个人学习或许会很枯燥,但是寻找更多志同道合的朋友一起,学习将会变得更加有意义✌✌) 这是一个数据驱动的时代,想要从事机器学习.人工智能.数据挖掘等前沿技术,都离不开 ...

  5. 利用Python进行数据分析(5) NumPy基础: ndarray索引和切片

    概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为a ...

  6. 数据分析 之 NumPy

    目录 简单了解数据分析 Python数据分析三剑客(Numpy,Pandas,Matplotlib) 简单使用np.array() 使用np的routines函数创建数组 ndarray N维数组对象 ...

  7. Python数据分析入门与实践

    Python数据分析入门与实践 整个课程都看完了,这个课程的分享可以往下看,下面有链接,之前做java开发也做了一些年头,也分享下自己看这个视频的感受,单论单个知识点课程本身没问题,大家看的时候可以关 ...

  8. 数据分析01 /numpy模块

    数据分析01 /数据分析之numpy模块 目录 数据分析01 /数据分析之numpy模块 1. numpy简介 2. numpy的创建 3. numpy的方法 4. numpy的常用属性 5. num ...

  9. 数据分析之Numpy库入门

    1.列表与数组 在python的基础语言部分,我们并没有介绍数组类型,但是像C.Java等语言都是有数组类型的,那python中的列表和数组有何区别呢? 一维数据:都表示一组数据的有序结构 区别: 列 ...

随机推荐

  1. szwyadmin程序漏洞拿shell【方法笔记】

    我们在Google中搜索关键词 关键字:inurl:szwyadmin/login.asp 任意打开一个搜索结果,打开登录界面后在地址栏中输入下面的代码: 代码: javascript:alert(d ...

  2. Django REST framework认证权限和限制和频率

    认证.权限和限制 身份验证是将传入请求与一组标识凭据(例如请求来自的用户或其签名的令牌)相关联的机制.然后 权限 和 限制 组件决定是否拒绝这个请求. 简单来说就是: 认证确定了你是谁 权限确定你能不 ...

  3. LightOJ - 1102 - Problem Makes Problem(组合数)

    链接: https://vjudge.net/problem/LightOJ-1102 题意: As I am fond of making easier problems, I discovered ...

  4. vue创建组件的方式

    一.直接通过Vue.extend的方式创建组件 // 通过vue.extend 来创建全局组件 var com1 = Vue.extend({ template:'<h3>这是h3组件&l ...

  5. 如何识别和解决SQL Server中的热闩锁(PAGELATCH_EX)

    描述 在SQL Server中,内部闩锁体系结构可在SQL操作期间保护内存.通过页面上的读写操作,可以确保内存结构的一致性.从根本上讲,它具有两个类:缓冲区锁存器和非缓冲区锁存器,它们在SQL Eng ...

  6. Mysql分布式集群

    一.准备 集群: 192.168.1.191  管理节点192.168.1.192  管理节点192.168.1.193  数据节点和API节点 192.168.1.194  数据节点和API节点 安 ...

  7. learning java 字符串常用操作

    // 字符串索引取值 "; System.)); // 字符串比较 "; "; "; System.out.println(s1.compareTo(s2)); ...

  8. Springboot如何优雅的解决ajax+自定义headers的跨域请求[转]

    1.什么是跨域 由于浏览器同源策略(同源策略,它是由Netscape提出的一个著名的安全策略.现在所有支持JavaScript 的浏览器都会使用这个策略.所谓同源是指,域名,协议,端口相同.),凡是发 ...

  9. Bzoj 2154: Crash的数字表格(积性函数)

    2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MB Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least ...

  10. 转载 | Python AI 教学│k-means聚类算法及应用

    关注我们的公众号哦!获取更多精彩哦! 1.问题导入 假如有这样一种情况,在一天你想去某个城市旅游,这个城市里你想去的有70个地方,现在你只有每一个地方的地址,这个地址列表很长,有70个位置.事先肯定要 ...