朴素贝叶斯与逻辑回归的区别:

朴素贝叶斯

逻辑回归

生成模型(Generative model)

判别模型(Discriminative model)

对特征x和目标y的联合分布P(x,y)建模,使用极大后验概率估计法估计出最有可能的P(y|x)

直接对后验概率P(y|x)建模,使用极大似然估计法使其最大化

不需要优化参数,先用极大似然估计法估计出先验概率P(y)和条件概率P(x|y),然后计算出极大后验概率P(y|x)

需要优化参数,先用极大似然估计法得出损失函数,再用梯度下降法等优化参数

假设特征之间相互独立,对于不相互独立的特征,朴素贝叶斯的分类效果会差一些

不必假设特征之间是相互独立的,对于不相互独立的特征,逻辑回归会在训练过程中对参数自动调整

Andrew Ng和Michael Jordan在2001年发了一篇NIPS短文《 On Discriminative vs. Generative classifiers: A comparison of logistic regression and naive Bayes 》,他们把这两个模型在各种数据集上面进行测试,最后得到在小数据上Naive bayes可以取得更好的效果,随着数据的增多、特征维度的增大,Logistic regression的效果更好。这是因为Naive bayes是生成模型,假设训练数据服从某种分布,在有prior的情况下模型能够把数据fit的更好,但是随着数据量的增多,prior对整个数据后验概率分布的影响逐渐降低。而Logistic regression属于判别模型,不去建模联合概率,通过训练数据直接预测输出,因此在数据足够多的情况下能够得到更好一些的效果。

机器学习---朴素贝叶斯与逻辑回归的区别(Machine Learning Naive Bayes Logistic Regression Difference)的更多相关文章

  1. 机器学习---用python实现朴素贝叶斯算法(Machine Learning Naive Bayes Algorithm Application)

    在<机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)>一文中,我们介绍了朴素贝叶斯分类器的原理.现在,让我们来实践一下. 在 ...

  2. spark 机器学习 朴素贝叶斯 实现(二)

    已知10月份10-22日网球场地,会员打球情况通过朴素贝叶斯算法,预测23,24号是否适合打网球.结果,日期,天气 温度 风速结果(0否,1是)天气(0晴天,1阴天,2下雨)温度(0热,1舒适,2冷) ...

  3. spark 机器学习 朴素贝叶斯 原理(一)

    朴素贝叶斯算法仍然是流行的挖掘算法之一,该算法是有监督的学习算法,解决的是分类问题,如客户是否流失.是否值得投资.信用等级评定等多分类问题.该算法的优点在于简单易懂.学习效率高.在某些领域的分类问题中 ...

  4. Python之机器学习-朴素贝叶斯(垃圾邮件分类)

    目录 朴素贝叶斯(垃圾邮件分类) 邮箱训练集下载地址 模块导入 文本预处理 遍历邮件 训练模型 测试模型 朴素贝叶斯(垃圾邮件分类) 邮箱训练集下载地址 邮箱训练集可以加我微信:nickchen121 ...

  5. 机器学习朴素贝叶斯 SVC对新闻文本进行分类

    朴素贝叶斯分类器模型(Naive Bayles) Model basic introduction: 朴素贝叶斯分类器是通过数学家贝叶斯的贝叶斯理论构造的,下面先简单介绍贝叶斯的几个公式: 先验概率: ...

  6. 机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)

    朴素贝叶斯分类器是一组简单快速的分类算法.网上已经有很多文章介绍,比如这篇写得比较好:https://blog.csdn.net/sinat_36246371/article/details/6014 ...

  7. 机器学习---三种线性算法的比较(线性回归,感知机,逻辑回归)(Machine Learning Linear Regression Perceptron Logistic Regression Comparison)

    最小二乘线性回归,感知机,逻辑回归的比较:   最小二乘线性回归 Least Squares Linear Regression 感知机 Perceptron 二分类逻辑回归 Binary Logis ...

  8. xss  多分类 优选 贝叶斯、逻辑回归、决策树

    import re import numpy as np from sklearn import cross_validation from sklearn import datasets from ...

  9. NLP系列(4)_朴素贝叶斯实战与进阶

    作者: 寒小阳 && 龙心尘 时间:2016年2月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/50629608 htt ...

随机推荐

  1. 一文快速入门Docker

    Docker提供一种安全.可重复的环境中自动部署软件的方式,拉开了基于与计算平台发展方式的变革序幕.如今Docker在互联网公司使用已经非常普遍.本文用十分钟时间,带你快速入门Docker. Dock ...

  2. 高并发场景下System.currentTimeMillis()的性能问题的优化

    高并发场景下System.currentTimeMillis()的性能问题的优化 package cn.ucaner.alpaca.common.util.key; import java.sql.T ...

  3. SessionChange

    protected override void OnSessionChange(SessionChangeDescription changeDescription) { System.IO.File ...

  4. JAVA案例练习: 去除ArrayList中重复的字符串(字符串内容相同),去除重复的对象

    package com.yqw.list; import java.util.ArrayList;import java.util.Iterator; public class Demo_ArrayL ...

  5. 【开发笔记】- 转义html特殊字符

    package com.juihai.util; import org.apache.commons.lang.StringUtils; import org.springframework.web. ...

  6. 采用__call__ 实现装饰器模式

    装饰器模式在实现中也是很常见的:比如手机贴膜,手机壳 都是为了给手机增加一些额外功能 增加耐操 装饰器模式的本质就是对对象二次包装,赋额外功能 __call__ __call__是python魔术方法 ...

  7. JAVA基础之HttpServletRequest请求

    HttpServletRequest请求是获取请求行.请求头和请求体:可以通过这个方法设置防盗链,获取地址.牢记解决乱码的方式. 怎么选择是重定向还是转发呢?通常情况下转发更快,而且能保持reques ...

  8. maven设定项目编码

    今天在DOS下执行mvn compile命令时报错说缺少必要符号,事实上根本就没有缺少,但何以如此呢,为啥eclipse在编译时就没有这问题呢? 原因是编码的问题造成的! eclipse在编译的使用使 ...

  9. 【RAC】将RAC备份集恢复为单实例数据库

    [RAC]将RAC备份集恢复为单实例数据库 一.1  BLOG文档结构图 一.2  前言部分 一.2.1  导读 各位技术爱好者,看完本文后,你可以掌握如下的技能,也可以学到一些其它你所不知道的知识, ...

  10. CAS 的问题

    cas这么好用,那么有没有什么问题呢?还真有 ABA问题 CAS需要在操作值的时候检查下值有没有发生变化,如果没有发生变化则更新,但是如果一个值原来是A,变成了B,又变成了A,那么使用CAS进行检查时 ...