P3265 [JLOI2015]装备购买(高斯消元+贪心,线性代数)
题意;
有n个装备,每个装备有m个属性,每件装备的价值为cost。
小哥,为了省钱,如果第j个装备的属性可以由其他准备组合而来。比如
每个装备属性表示为, b1, b2.......bm . 它可以由其他2个装备组合而成,则
b1=k1*a1+h1*c1. b2=k1*a2+h2*c1.......bm=km*am+hm*cm这样的话,把属性看做是向量,是不是相当于2个m维度的向量,线性的表示了第三个向量呢?
那么,题目的意思就是在n个向量中,找出一组基,并且这一组基的价值和最小。
这相当于把这些向量先放进一个矩阵中,这里出现了一个问题,那就是这些向量是按什么样的顺序放的。其实,我们是按价值从小到大依次从上向下放。至于为什么,后面会讲。
当这样一个矩阵构造好了之后,我们回到原问题。我们求在n个向量中,找出一组基,并且这一组基的价值和最小。
那么这一组基其实就是矩阵的极大无关组。而求极大无关组,直接运用高斯消元就行了。但是在这个题中我们需要改变一般高斯消元中主元的选择(一般高斯消元一般选择某一列中最大值(不懂的自己查一下代码))
我们的主元是这样的,枚举从1到m的列,第一个不为0的所在行作为主元。 可能不太明白,我举个例子
这样,先枚举[1][1]=0; 枚举下一个[1][2]!=0 则,列2的主元就是第一行了,并把它记录在p[2]=1中,后面跳出,枚举第2行
[2][1]!=0则,p[1]=2;跳出, 枚举第3行,因为第1列的主元已经有了,然后第2行把第3行进行消元。完成后,枚举到第2列,然以用第2列的主元第1行,消第3行的元,然后依次类推。那么最后的个数和代价就是基的个数和基的价值。为什么这样?你是不是已经发现,选择的主元肯定是第一,第二前面的行。我们刚刚放入向量的价值从上到下是从小到大的,这样就是一个贪心。
代码:
#include<iostream>
#include<algorithm>
using namespace std;
#define maxn 505
const long double eps = 1e-;
struct node
{
long double x[maxn];
int cost;
}a[maxn];
int n, m, p[maxn], cnt;
int sum;
bool cmp(node a, node b){
return a.cost < b.cost;
}
void guass()
{
for (int i = ; i <= n;++i)
for (int j = ; j <= m; ++j)
{
if (abs(a[i].x[j])>eps) //当矩阵【i】【j】>0时,
{
if (!p[j])
{
p[j] = i;
cnt++; sum += a[i].cost;
break;
}
else
{
long double t = a[i].x[j] / a[p[j]].x[j];
for (int k = j; k <= m; ++k)
a[i].x[k] -= a[p[j]].x[k] * t;
}
}
}
}
int main()
{
cin >> n >> m;
for (int i = ; i <= n;++i)
for (int j = ; j <= m; ++j)
cin >> a[i].x[j];
for (int i = ; i <= n; ++i)
cin >> a[i].cost;
sort(a + , a + n+, cmp);
guass();
//printf("%d %d\n", cnt, sum);
cout << cnt << " " << sum << endl;
}
代码
P3265 [JLOI2015]装备购买(高斯消元+贪心,线性代数)的更多相关文章
- BZOJ 4004 JLOI2015 装备购买 高斯消元+线性基
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4004 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装 ...
- BZOJ 4004: [JLOI2015]装备购买 高斯消元解线性基
BZOJ严重卡精,要加 $long$ $double$ 才能过. 题意:求权和最小的极大线性无关组. 之前那个方法解的线性基都是基于二进制拆位的,这次不行,现在要求一个适用范围更广的方法. 考虑贪心 ...
- BZOJ 4004: [JLOI2015]装备购买 [高斯消元同余 线性基]
和前两(一)题一样,不过不是异或方程组了..... 然后bzoj的新数据是用来卡精度的吧..... 所有只好在模意义下做啦 只是巨慢无比 #include <iostream> #incl ...
- BZOJ 3143 高斯消元+贪心....
思路: 先算一下每条边经过次数的期望 转化为每个点经过次数的期望 边的期望=端点的期望/度数 统计一下度数 然后高斯消元 贪心附边权--. //By SiriusRen #include <cm ...
- 洛谷P3265 [JLOI2015]装备购买(线性基+高斯消元)
传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 不难看出题目讲的就是线性基 这种最小化权值的问题一般都是贪心的,就是按价值从低到高考虑每一个是否能选 据说贪心的证明得用拟阵我不会 据说这题是实数意 ...
- 洛谷P3265 [JLOI2015]装备购买 [线性基]
题目传送门 装备购买 格式难调,题面就不放了. 分析: 一句话,有$n$件物品,每件物品有$m$个属性和一个花费值,如果一个装备的属性值可以由其他装备的属性值改变系数后组合得到那就不买,求购买最多装备 ...
- [HNOI2013] 游走 - 概率期望,高斯消元,贪心
假如我们知道了每条边经过的期望次数,则变成了一个显然的贪心.现在考虑如何求期望次数. 由于走到每个点后各向等概率,很显然一条边的期望次数可以与它的两个端点的期望次数,转化为求点的期望次数 考虑每个点对 ...
- Luogu P3265 [JLOI2015]装备购买
好吧刚开始不知道自己在写什么,,,后来写了线性方程组,又过了一天一上午终于明白了... 当然题意很显然:求代价最小的极大线性无关组. 那就高斯消元(好吧刚开始我不会用它来解这道题qwq) 第一个循环是 ...
- 【BZOJ 4004】 装备购买(高斯消元+贪心)
装备购买 题目 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j ...
随机推荐
- rootkit(kbeast-v1)
Rootkit有应用级.内核级和硬件级 用的比较多的是内核级别,比如基于linux LKM编写的rootkit rootkit可以理解为一个超级管理员的工具箱,这个工具箱通过调用系统LKM接口可以动态 ...
- npm包
https://www.cnblogs.com/xinxingyu/p/5736244.html node - glob模块讲解 https://github.com/isaacs/node- ...
- MVC基础篇—控制器与视图数据的传递
Viewdata,Viewbag,Tempdata 1 Vewdata:简单来说就是数据字典,通过键值对的形式来存放数据.举例如下: //后台控制器代码: public ActionResult V ...
- Linux常用基本命令:三剑客命令之-awk格式化动作
我们之前说过,awk是一个超强的文本格式化工具,而本文的printf动作就是经常用来做格式化文本的.使用方式跟c语言的printf差不多. 1,printf默认不会回车换行 ghostwu@dev:~ ...
- javascript刷新父页面的各种方法汇总
1.用iframe.弹出子页面刷新父页面iframe <script language=JavaScript> parent.location.reload(); </script& ...
- 2018-01-15 Antlr4: 修改语法规则更接近普通BNF格式
经 @沈默 在上文Antlr4添加中文变量赋求值,括号,各种问题评论中指出, 语法规则描述依赖于Antlr4生成的语法分析器的默认分析方法, 比如运算符的左联系, 以及优先级处理等等. 于是将语法修改 ...
- Salesforce 数据库操作简介
Salesforce 中的数据库操作方式 Salesforce 为用户和开发者提供了四种基本的数据库操作方式: Apex 中的 DML 语句 Apex 中的 Database 类 SOQL 查询 SO ...
- loadrunner 脚本优化-关联设置
脚本优化-关联设置 by:授客 QQ:1033553122 关联的原理 关联也属于一钟特殊的参数化.一般参数化的参数来源于一个文件.一个定义的table.通过sql写的一个结果集等,但关联所获得的参数 ...
- loadrunner 场景设计-制定负载测试计划
by:授客 QQ:1033553122 场景设计-制定负载测试计划 步骤1.分析应用程序 你应该对硬件和软件组建,系统配置和典型的使用场景很熟悉.这些应用程序的分析保证你在使用loadrunner进行 ...
- (网页)Java日志记录框架Logback配置详解(企业级应用解决方案)(转)
转自CSDN: 前言 Logback是现在比较流行的一个日志记录框架,它的配置比较简单学习成本相对较低,所以刚刚接触该框架的朋友不要畏惧,多花点耐心很快就能灵活应用了.本篇博文不会具体介绍Logbac ...