HBase基础之常用过滤器hbase shell操作
创建表
create 'test1', 'lf', 'sf'
lf: column family of LONG values (binary value)
-- sf: column family of STRING values
导入数据
put 'test1', 'user1|ts1', 'sf:c1', 'sku1'
put 'test1', 'user1|ts2', 'sf:c1', 'sku188'
put 'test1', 'user1|ts3', 'sf:s1', 'sku123' put 'test1', 'user2|ts4', 'sf:c1', 'sku2'
put 'test1', 'user2|ts5', 'sf:c2', 'sku288'
put 'test1', 'user2|ts6', 'sf:s1', 'sku222'
一个用户(userX),在什么时间(tsX),作为rowkey
对什么产品(value:skuXXX),做了什么操作作为列名,比如,c1: click from homepage; c2: click from ad; s1: search from homepage; b1: buy
查询案例
谁的值=sku188
scan 'test1', FILTER=>"ValueFilter(=,'binary:sku188')" ROW COLUMN+CELL
user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188
谁的值包含88
scan 'test1', FILTER=>"ValueFilter(=,'substring:88')" ROW COLUMN+CELL
user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188
user2|ts5 column=sf:c2, timestamp=1409122355030, value=sku288
通过广告点击进来的(column为c2)值包含88的用户
scan 'test1', FILTER=>"ColumnPrefixFilter('c2') AND ValueFilter(=,'substring:88')"
ROW COLUMN+CELL
user2|ts5 column=sf:c2, timestamp=1409122355030, value=sku288
通过搜索进来的(column为s)值包含123或者222的用户
scan 'test1', FILTER=>"ColumnPrefixFilter('s') AND ( ValueFilter(=,'substring:123') OR ValueFilter(=,'substring:222') )"
ROW COLUMN+CELL
user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123
user2|ts6 column=sf:s1, timestamp=1409122355970, value=sku222
rowkey为user1开头的
scan 'test1', FILTER => "PrefixFilter ('user1')"
ROW COLUMN+CELL
user1|ts1 column=sf:c1, timestamp=1409122354868, value=sku1
user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188
user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123
FirstKeyOnlyFilter: 一个rowkey可以有多个version,同一个rowkey的同一个column也会有多个的值, 只拿出key中的第一个column的第一个version
KeyOnlyFilter: 只要key,不要value
scan 'test1', FILTER=>"FirstKeyOnlyFilter() AND ValueFilter(=,'binary:sku188') AND KeyOnlyFilter()" ROW COLUMN+CELL
user1|ts2 column=sf:c1, timestamp=1409122354918, value=
从user1|ts2开始,找到所有的rowkey以user1开头的
scan 'test1', {STARTROW=>'user1|ts2', FILTER => "PrefixFilter ('user1')"}
ROW COLUMN+CELL
user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188
user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123
从user1|ts2开始,找到所有的到rowkey以user2开头
scan 'test1', {STARTROW=>'user1|ts2', STOPROW=>'user2'}
ROW COLUMN+CELL
user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188
user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123
查询rowkey里面包含ts3的
import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.SubstringComparator
import org.apache.hadoop.hbase.filter.RowFilter
scan 'test1', {FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'), SubstringComparator.new('ts3'))} ROW COLUMN+CELL
user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123
查询rowkey里面包含ts的
import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.SubstringComparator
import org.apache.hadoop.hbase.filter.RowFilter
scan 'test1', {FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'), SubstringComparator.new('ts'))} ROW COLUMN+CELL
user1|ts1 column=sf:c1, timestamp=1409122354868, value=sku1
user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188
user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123
user2|ts4 column=sf:c1, timestamp=1409122354998, value=sku2
user2|ts5 column=sf:c2, timestamp=1409122355030, value=sku288
user2|ts6 column=sf:s1, timestamp=1409122355970, value=sku222
加入一条测试数据
put 'test1', 'user2|err', 'sf:s1', 'sku999'
查询rowkey里面以user开头的,新加入的测试数据并不符合正则表达式的规则,故查询不出来
import org.apache.hadoop.hbase.filter.RegexStringComparator
import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.SubstringComparator
import org.apache.hadoop.hbase.filter.RowFilter
scan 'test1', {FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'),RegexStringComparator.new('^user\d+\|ts\d+$'))} ROW COLUMN+CELL
user1|ts1 column=sf:c1, timestamp=1409122354868, value=sku1
user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188
user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123
user2|ts4 column=sf:c1, timestamp=1409122354998, value=sku2
user2|ts5 column=sf:c2, timestamp=1409122355030, value=sku288
user2|ts6 column=sf:s1, timestamp=1409122355970, value=sku222
加入测试数据
put 'test1', 'user1|ts9', 'sf:b1', 'sku1'
b1开头的列中并且值为sku1的
scan 'test1', FILTER=>"ColumnPrefixFilter('b1') AND ValueFilter(=,'binary:sku1')"
ROW COLUMN+CELL
user1|ts9 column=sf:b1, timestamp=1409124908668, value=sku1
SingleColumnValueFilter的使用,b1开头的列中并且值为sku1的
import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.SingleColumnValueFilter
import org.apache.hadoop.hbase.filter.SubstringComparator
scan 'test1', {COLUMNS => 'sf:b1', FILTER => SingleColumnValueFilter.new(Bytes.toBytes('sf'), Bytes.toBytes('b1'), CompareFilter::CompareOp.valueOf('EQUAL'), Bytes.toBytes('sku1'))} ROW COLUMN+CELL
user1|ts9 column=sf:b1, timestamp=1409124908668, value=sku1
hbase zkcli 的使用
hbase zkcli
ls /
[hbase, zookeeper]
[zk: hadoop000:2181(CONNECTED) 1] ls /hbase
[meta-region-server, backup-masters, table, draining, region-in-transition, running, table-lock, master, namespace, hbaseid, online-snapshot, replication, splitWAL, recovering-regions, rs]
[zk: hadoop000:2181(CONNECTED) 2] ls /hbase/table
[member, test1, hbase:meta, hbase:namespace]
[zk: hadoop000:2181(CONNECTED) 3] ls /hbase/table/test1
[]
[zk: hadoop000:2181(CONNECTED) 4] get /hbase/table/test1
?master:60000}l$??lPBUF
cZxid = 0x107
ctime = Wed Aug 27 14:52:21 HKT 2014
mZxid = 0x10b
mtime = Wed Aug 27 14:52:22 HKT 2014
pZxid = 0x107
cversion = 0
dataVersion = 2
aclVersion = 0
ephemeralOwner = 0x0
dataLength = 31
numChildren = 0
HBase基础之常用过滤器hbase shell操作的更多相关文章
- HBase基础之常用过滤器hbase shell操作(转)
创建表 create 'test1', 'lf', 'sf' lf: column family of LONG values (binary value)-- sf: column family o ...
- HBase 相关API操练(一):Shell操作
HBase 为用户提供了一个非常方便的使用方式, 我们称之为“HBase Shell”. HBase Shell 提供了大多数的 HBase 命令, 通过 HBase Shell 用户可以方便地创建. ...
- Shell基础:常用技巧&重定向&管道操作
Shell脚本介绍和常用工具 Shell脚本 Shell脚本:实际就是windows里的批处理脚本,多条可一次执行的Shell命令集合.Linux上的脚本可以用很多种语言实现,bash shell是比 ...
- Hbase学习记录(2)| Shell操作
查看表结构 describe '表名' 查看版本 get '表名','zhangsan'{COLUMN=>'info:age',VERSIONS=>3} 删除整行 deleteall '表 ...
- HBase(3)-安装与Shell操作
一. 安装 1. 启动Zookeeper集群 2. 启动Hadoop集群 3. 上传并解压HBase -bin.tar.gz -C /opt/module 4. 修改配置文件 #修改habse-env ...
- Hadoop Shell 操作
此随笔仅记录一下常用的Hadoop shell 操作的命令 参考官方文档 http://hadoop.apache.org/docs/r1.0.4/cn/hdfs_shell.html FS S ...
- hbase shell基础和常用命令详解(转)
HBase shell的基本用法 hbase提供了一个shell的终端给用户交互.使用命令hbase shell进入命令界面.通过执行 help可以看到命令的帮助信息. 以网上的一个学生成绩表的例子来 ...
- hbase shell基础和常用命令详解
HBase是Google Bigtable的开源实现,它利用Hadoop HDFS作为其文件存储系统,利用Hadoop MapReduce来处理HBase中的海量数据,利用Zookeeper作为协同服 ...
- HBASE与hive对比使用以及HBASE常用shell操作。与sqoop的集成
2.6.与 Hive 的集成2.6.1.HBase 与 Hive 的对比1) Hive(1) 数据仓库Hive 的本质其实就相当于将 HDFS 中已经存储的文件在 Mysql 中做了一个双射关系,以方 ...
随机推荐
- Vue命令(一)
Vue Command Summary 1.v-bind:元素节点的title属性和message保持一致. <div id="app-1"> <span v-b ...
- 第三个Sprint冲刺第六天(燃尽图)
- [福大软工] Z班——Alpha现场答辩情况汇总
Alpha现场答辩 小组互评(文字版) 各组对于 麻瓜制造者 的评价与建议 队伍名 评价与建议 *** 界面较友好,安全性不足,功能基本完整.希望能留下卖家的联系方式而不是在APP上直接联系,APP上 ...
- 必应语音API(Bing text to speech API)
前言 Link : Microsoft Speech API overview 通过这个链接,大致了解Bing speech API的语音识别和语音合成两部分, 这次是需要用到TTS,所以就直接看TT ...
- PHP加密与编码技术
md5加密: string md5( string $str [,bool $raw output=false]) md5加密方法用的挺多,有两个参数,第一个参数是要加密的字符串,第二个参数默认为f ...
- [读书笔记]Linux命令行与shell编程读书笔记02 环境变量以及其他
1. Linux的环境变量. 全局环境变量的查看 printenv 一个结果示例 XDG_SESSION_ID=354TERM=xtermSHELL=/bin/bashSSH_CLIENT=10.24 ...
- number (2)编译错 (类的大小写错误) Filewriter cannot be resolved to a type
没找到所使用的类所在的类定义,一般常见于使用了外部jar中的类,但有对应的import语句.比如,如果程序中使用了ArrayList这个类,但你程序类文件的最开始import部分如果没有import ...
- 请求与响应编码及jsp基本原理
1.请求转发和请求包含 (1)请求转发: this.getServletContext().getRequestDispatcher("").forward(request,res ...
- CF1037D Valid BFS?
Valid BFS? CodeForces - 1037D The BFS algorithm is defined as follows. Consider an undirected graph ...
- ACM-ICPC 2018 焦作赛区网络预赛 E Jiu Yuan Wants to Eat (树链剖分+线段树)
题目链接:https://nanti.jisuanke.com/t/31714 题意:给你一棵树,初始全为0,有四种操作: 1.u-v乘x 2.u-v加x 3. u-v取反 4.询问u-v ...