创建表

create 'test1', 'lf', 'sf'

lf: column family of LONG values (binary value)
-- sf: column family of STRING values

导入数据

put 'test1', 'user1|ts1', 'sf:c1', 'sku1'
put 'test1', 'user1|ts2', 'sf:c1', 'sku188'
put 'test1', 'user1|ts3', 'sf:s1', 'sku123' put 'test1', 'user2|ts4', 'sf:c1', 'sku2'
put 'test1', 'user2|ts5', 'sf:c2', 'sku288'
put 'test1', 'user2|ts6', 'sf:s1', 'sku222'

一个用户(userX),在什么时间(tsX),作为rowkey

对什么产品(value:skuXXX),做了什么操作作为列名,比如,c1: click from homepage; c2: click from ad; s1: search from homepage; b1: buy

查询案例

谁的值=sku188

scan 'test1', FILTER=>"ValueFilter(=,'binary:sku188')"

ROW                          COLUMN+CELL
user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188

谁的值包含88

scan 'test1', FILTER=>"ValueFilter(=,'substring:88')"

ROW                          COLUMN+CELL
user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188
user2|ts5 column=sf:c2, timestamp=1409122355030, value=sku288

通过广告点击进来的(column为c2)值包含88的用户

scan 'test1', FILTER=>"ColumnPrefixFilter('c2') AND ValueFilter(=,'substring:88')"

ROW                          COLUMN+CELL
user2|ts5 column=sf:c2, timestamp=1409122355030, value=sku288

通过搜索进来的(column为s)值包含123或者222的用户

scan 'test1', FILTER=>"ColumnPrefixFilter('s') AND ( ValueFilter(=,'substring:123') OR ValueFilter(=,'substring:222') )"

ROW                          COLUMN+CELL
user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123
user2|ts6 column=sf:s1, timestamp=1409122355970, value=sku222

rowkey为user1开头的

scan 'test1', FILTER => "PrefixFilter ('user1')"

ROW                          COLUMN+CELL
user1|ts1 column=sf:c1, timestamp=1409122354868, value=sku1
user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188
user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123

FirstKeyOnlyFilter: 一个rowkey可以有多个version,同一个rowkey的同一个column也会有多个的值, 只拿出key中的第一个column的第一个version
KeyOnlyFilter: 只要key,不要value

scan 'test1', FILTER=>"FirstKeyOnlyFilter() AND ValueFilter(=,'binary:sku188') AND KeyOnlyFilter()"

ROW                          COLUMN+CELL
user1|ts2 column=sf:c1, timestamp=1409122354918, value=

从user1|ts2开始,找到所有的rowkey以user1开头的

scan 'test1', {STARTROW=>'user1|ts2', FILTER => "PrefixFilter ('user1')"}

ROW                          COLUMN+CELL
user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188
user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123

从user1|ts2开始,找到所有的到rowkey以user2开头

scan 'test1', {STARTROW=>'user1|ts2', STOPROW=>'user2'}

ROW                          COLUMN+CELL
user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188
user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123

查询rowkey里面包含ts3的

import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.SubstringComparator
import org.apache.hadoop.hbase.filter.RowFilter
scan 'test1', {FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'), SubstringComparator.new('ts3'))} ROW COLUMN+CELL
user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123

查询rowkey里面包含ts的

import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.SubstringComparator
import org.apache.hadoop.hbase.filter.RowFilter
scan 'test1', {FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'), SubstringComparator.new('ts'))} ROW COLUMN+CELL
user1|ts1 column=sf:c1, timestamp=1409122354868, value=sku1
user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188
user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123
user2|ts4 column=sf:c1, timestamp=1409122354998, value=sku2
user2|ts5 column=sf:c2, timestamp=1409122355030, value=sku288
user2|ts6 column=sf:s1, timestamp=1409122355970, value=sku222

加入一条测试数据

put 'test1', 'user2|err', 'sf:s1', 'sku999'

查询rowkey里面以user开头的,新加入的测试数据并不符合正则表达式的规则,故查询不出来

import org.apache.hadoop.hbase.filter.RegexStringComparator
import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.SubstringComparator
import org.apache.hadoop.hbase.filter.RowFilter
scan 'test1', {FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'),RegexStringComparator.new('^user\d+\|ts\d+$'))} ROW COLUMN+CELL
user1|ts1 column=sf:c1, timestamp=1409122354868, value=sku1
user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188
user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123
user2|ts4 column=sf:c1, timestamp=1409122354998, value=sku2
user2|ts5 column=sf:c2, timestamp=1409122355030, value=sku288
user2|ts6 column=sf:s1, timestamp=1409122355970, value=sku222

加入测试数据

put 'test1', 'user1|ts9', 'sf:b1', 'sku1'

b1开头的列中并且值为sku1的

scan 'test1', FILTER=>"ColumnPrefixFilter('b1') AND ValueFilter(=,'binary:sku1')"

ROW                          COLUMN+CELL
user1|ts9 column=sf:b1, timestamp=1409124908668, value=sku1

SingleColumnValueFilter的使用,b1开头的列中并且值为sku1的

import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.SingleColumnValueFilter
import org.apache.hadoop.hbase.filter.SubstringComparator
scan 'test1', {COLUMNS => 'sf:b1', FILTER => SingleColumnValueFilter.new(Bytes.toBytes('sf'), Bytes.toBytes('b1'), CompareFilter::CompareOp.valueOf('EQUAL'), Bytes.toBytes('sku1'))} ROW COLUMN+CELL
user1|ts9 column=sf:b1, timestamp=1409124908668, value=sku1

hbase zkcli 的使用

hbase zkcli
ls /
[hbase, zookeeper]

[zk: hadoop000:2181(CONNECTED) 1] ls /hbase
[meta-region-server, backup-masters, table, draining, region-in-transition, running, table-lock, master, namespace, hbaseid, online-snapshot, replication, splitWAL, recovering-regions, rs]

[zk: hadoop000:2181(CONNECTED) 2] ls /hbase/table
[member, test1, hbase:meta, hbase:namespace]

[zk: hadoop000:2181(CONNECTED) 3] ls /hbase/table/test1
[]

[zk: hadoop000:2181(CONNECTED) 4] get /hbase/table/test1
?master:60000}l$??lPBUF
cZxid = 0x107
ctime = Wed Aug 27 14:52:21 HKT 2014
mZxid = 0x10b
mtime = Wed Aug 27 14:52:22 HKT 2014
pZxid = 0x107
cversion = 0
dataVersion = 2
aclVersion = 0
ephemeralOwner = 0x0
dataLength = 31
numChildren = 0

HBase基础之常用过滤器hbase shell操作的更多相关文章

  1. HBase基础之常用过滤器hbase shell操作(转)

    创建表 create 'test1', 'lf', 'sf' lf: column family of LONG values (binary value)-- sf: column family o ...

  2. HBase 相关API操练(一):Shell操作

    HBase 为用户提供了一个非常方便的使用方式, 我们称之为“HBase Shell”. HBase Shell 提供了大多数的 HBase 命令, 通过 HBase Shell 用户可以方便地创建. ...

  3. Shell基础:常用技巧&重定向&管道操作

    Shell脚本介绍和常用工具 Shell脚本 Shell脚本:实际就是windows里的批处理脚本,多条可一次执行的Shell命令集合.Linux上的脚本可以用很多种语言实现,bash shell是比 ...

  4. Hbase学习记录(2)| Shell操作

    查看表结构 describe '表名' 查看版本 get '表名','zhangsan'{COLUMN=>'info:age',VERSIONS=>3} 删除整行 deleteall '表 ...

  5. HBase(3)-安装与Shell操作

    一. 安装 1. 启动Zookeeper集群 2. 启动Hadoop集群 3. 上传并解压HBase -bin.tar.gz -C /opt/module 4. 修改配置文件 #修改habse-env ...

  6. Hadoop Shell 操作

    此随笔仅记录一下常用的Hadoop shell 操作的命令 参考官方文档    http://hadoop.apache.org/docs/r1.0.4/cn/hdfs_shell.html FS S ...

  7. hbase shell基础和常用命令详解(转)

    HBase shell的基本用法 hbase提供了一个shell的终端给用户交互.使用命令hbase shell进入命令界面.通过执行 help可以看到命令的帮助信息. 以网上的一个学生成绩表的例子来 ...

  8. hbase shell基础和常用命令详解

    HBase是Google Bigtable的开源实现,它利用Hadoop HDFS作为其文件存储系统,利用Hadoop MapReduce来处理HBase中的海量数据,利用Zookeeper作为协同服 ...

  9. HBASE与hive对比使用以及HBASE常用shell操作。与sqoop的集成

    2.6.与 Hive 的集成2.6.1.HBase 与 Hive 的对比1) Hive(1) 数据仓库Hive 的本质其实就相当于将 HDFS 中已经存储的文件在 Mysql 中做了一个双射关系,以方 ...

随机推荐

  1. Java web错误总结~

    1.java程序中没有错,但是项目上面显示一个红叉的解决办法 错误信息: 报Description  Resource Path Location Type Java compiler level d ...

  2. MyBatis 集合操作语法范例:配合SQL的in关键字

    Java语法: private String[] tagIds; MyBatis语法 <delete id="deleteByIds" parameterType=" ...

  3. Java Date Compare

    Date a;Date b;假设现在你已经实例化了a和ba.after(b)返回一个boolean,如果a的时间在b之后(不包括等于)返回true b.before(a)返回一个boolean,如果b ...

  4. Linux 重启网络提示找不到eth0(no device found for “System eth0”)

    一.背景 使用VMWare创建了一个虚拟机(VM1),然后通过拷贝的方式创建了另一台虚拟机(VM2).在第二台虚拟机上设置网卡为固定IP,使用service network restart重启网络的时 ...

  5. MySQL下载安装详情教程

    1.下载MySQL数据库可以访问官方网站:https://www.mysql.com/ 2.点击DOWNLOADS模块下的Community模块下的MySQL Community Server进行下载 ...

  6. spring 文件加载 通过listener的类获取配置文件 并加载到spring容器中

  7. Uva10474-STL水题-白书

    白书的一道水题.话说好久没认真做难题了.今天出了排名,所有队伍里倒数第一啊! 代码没什么可说的了. #include <algorithm> #include <cstring> ...

  8. day11 reduce函数

    场景模拟: 序列元素在原有基础上加1 常规方法 简单但扩展性查 num1 = [1,2,3,4,5,6,7,8,9,100] res = 0 for i in num1: res += i print ...

  9. 【BZOJ3202】项链(莫比乌斯反演,Burnside引理)

    [BZOJ3202]项链(莫比乌斯反演,Burnside引理) 题面 BZOJ 洛谷 题解 首先读完题目,很明显的感觉就是,分成了两个部分计算. 首先计算本质不同的珠子个数,再计算本质不同的项链个数. ...

  10. 【BZOJ4830】[HNOI2017]抛硬币(组合计数,拓展卢卡斯定理)

    [BZOJ4830][HNOI2017]抛硬币(组合计数,拓展卢卡斯定理) 题面 BZOJ 洛谷 题解 暴力是啥? 枚举\(A\)的次数和\(B\)的次数,然后直接组合数算就好了:\(\display ...