【CF1076D】Edge Deletion 最短路+贪心
题目大意:给定 N 个点 M 条边的无向简单联通图,留下最多 K 条边,求剩下的点里面从 1 号顶点到其余各点最短路大小等于原先最短路大小的点最多怎么构造。
题解:我们可以在第一次跑 dij 时直接采用贪心策略,即:若当前答案集合的大小小于 K 且优先队列非空,则继续优先队列BFS,每次把一条边加入到答案集合中。因为是在求解最短路过程中向答案集合中加边,可知这就是一种最优策略。
代码如下
#include <bits/stdc++.h>
using namespace std;
typedef pair<long long,int> P;
const int maxn=3e5+10;
inline int read(){
int x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
}
struct node{
int nxt,to,w;
}e[maxn<<1];
int tot=1,head[maxn];
inline void add_edge(int from,int to,int w){
e[++tot]=node{head[from],to,w},head[from]=tot;
}
int n,m,k,pre[maxn],vis[maxn];
long long d[maxn];
vector<int> ans;
priority_queue<P> q;
void read_and_parse(){
n=read(),m=read(),k=read();
for(int i=1;i<=m;i++){
int from=read(),to=read(),w=read();
add_edge(from,to,w),add_edge(to,from,w);
}
}
void dij(){
for(int i=2;i<=n;i++)d[i]=1e15;
q.push(make_pair(0,1));
while(q.size()&&ans.size()<k){
int u=q.top().second;q.pop();
if(vis[u])continue;
if(u^1)ans.push_back(pre[u]/2);//ans中存边的编号
vis[u]=1;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to,w=e[i].w;
if(d[v]>d[u]+w){
d[v]=d[u]+w;
pre[v]=i;
q.push(make_pair(-d[v],v));
}
}
}
}
void solve(){
dij();
k=ans.size();
printf("%d\n",k);
for(int i=0;i<k;i++)printf("%d ",ans[i]);
}
int main(){
read_and_parse();
solve();
return 0;
}
【CF1076D】Edge Deletion 最短路+贪心的更多相关文章
- CF1076D Edge Deletion
洛谷传送门 cf传送门 这道题作为div.2的D题,被我一眼秒了我觉得十分荣幸,然后就开始写,然后就写了好久. AC之后看网上的题解,发现好多最短路树的,猛然发现我写的好复杂啊,结果还看到了直接一遍d ...
- CF1076D Edge Deletion 最短路径树+bfs
题目描述 You are given an undirected connected weighted graph consisting of n n n vertices and m m m edg ...
- CF1076D Edge Deletion 最短路树
问题描述 Codeforces 洛谷(有翻译) 题解 最短路树,是一棵在最短路过程中构建的树. 在\(\mathrm{Dijkstra}\)过程中,如果最终点\(y\)是由点\(x\)转移得到的,则在 ...
- Codeforces Round #303 (Div. 2) E. Paths and Trees 最短路+贪心
题目链接: 题目 E. Paths and Trees time limit per test 3 seconds memory limit per test 256 megabytes inputs ...
- Codeforces 1076D Edge Deletion(最短路树)
题目链接:Edge Deletion 题意:给定一张n个顶点,m条边的带权无向图,已知从顶点1到各个顶点的最短路径为di,现要求保留最多k条边,使得从顶点1到各个顶点的最短距离为di的顶点最多.输出m ...
- Codeforces 1076D Edge Deletion 【最短路+贪心】
<题目链接> 题目大意: n个点,m条边的无向图,现在需要删除一些边,使得剩下的边数不能超过K条.1点为起点,如果1到 i 点的最短距离与删除边之前的最短距离相同,则称 i 为 " ...
- 1076D Edge Deletion 【最短路】
题目:戳这里 题意:求出1到所有点的最短路径后,把边减到小于等于k条,问保留哪些边可以使仍存在的最短路径最多. 解题思路:这题就是考求最短路的原理.比如dijkstra,用优先队列优化后存在队列中的前 ...
- Edge Deletion CodeForces - 1076D(水最短路)
题意: 设从1到每个点的最短距离为d,求删除几条边后仍然使1到每个点的距离为d,使得剩下的边最多为k 解析: 先求来一遍spfa,然后bfs遍历每条路,如果d[v] == d[u] + Node[i] ...
- Educational Codeforces Round 54 (Rated for Div. 2) D:Edge Deletion
题目链接:http://codeforces.com/contest/1076/problem/D 题意:给一个n个点,m条边的无向图.要求保留最多k条边,使得其他点到1点的最短路剩余最多. 思路:当 ...
随机推荐
- Xamarin开发的一个简单画图程序分享
最近Xamarin比较火,于是稍微看了下,感觉接触过MVC的都应该能很快上手,还挺有意思,于是忍不住写了个简单的画图程序,之前看帖子有人说装不上或者无法部署,估计我比较幸运,编译完了一次就安装成功了, ...
- split-brain 脑裂问题(Keepalived)
脑裂(split-brain)指在一个高可用(HA)系统中,当联系着的两个节点断开联系时,本来为一个整体的系统,分裂为两个独立节点,这时两个节点开始争抢共享资源,结果会导致系统混乱,数据损坏.对于无状 ...
- getUserMedia API及HTML5 调用摄像头和麦克风
getUserMedia API简介 HTML5的getUserMedia API为用户提供访问硬件设备媒体(摄像头.视频.音频.地理位置等)的接口,基于该接口,开发者可以在不依赖任何浏览器插件的条件 ...
- 阅读<构建之法>13、14、15、16、17章
13章 这么多测试为什么不能整理出一个包括所有功能的测试呢?看着那么多测试都感觉奇怪了. 14章 怎样才能体现一个测试人员的工作价值呢?这样的判断又是否会太独断了? 15章 在时间上,会不会因不同功能 ...
- java中for循环的几种方式
比如定义一个数组int a[]={1, 2, 3, 4},下面我们罗列一下遍历这个数组的方法 1 for(;;) 这也是最常用的方法,不多做解释.代码如下 int a[] = {1, 2, 3, 4} ...
- FMDB数据库升级
FMDBMigrationManager 是与FMDB结合使用的一个第三方,可以记录数据库版本号并对数据库进行数据库升级等操作.首先要集成FMDB和FMDBMigrationManager,建议使用c ...
- Centos7 yum安装Chrome浏览器
一.创建yum源文件 cd /etc/yum.repo.d/ touch google-chrome.repo 二.输入yum源信息 [google-chrome] name=google-chrom ...
- 转帖--计算机网络基础知识大总汇 https://www.jianshu.com/p/674fb7ec1e2c?utm_campaign=maleskine&utm_content=note&utm_medium=seo_notes&utm_source=recommendation
计算机网络基础知识大总汇 龙猫小爷 关注 2016.09.14 23:01* 字数 12761 阅读 30639评论 35喜欢 720 一.什么是TCP/IP 网络和协议 1. TCP/IP是 ...
- [转帖] infiniband的协议速度
- Node require
var user = require("./module_user");//使用模块 module_userconsole.log(user.userCount);user.use ...