题目大意:给定 N 个点 M 条边的无向简单联通图,留下最多 K 条边,求剩下的点里面从 1 号顶点到其余各点最短路大小等于原先最短路大小的点最多怎么构造。

题解:我们可以在第一次跑 dij 时直接采用贪心策略,即:若当前答案集合的大小小于 K 且优先队列非空,则继续优先队列BFS,每次把一条边加入到答案集合中。因为是在求解最短路过程中向答案集合中加边,可知这就是一种最优策略。

代码如下

#include <bits/stdc++.h>
using namespace std;
typedef pair<long long,int> P;
const int maxn=3e5+10; inline int read(){
int x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
} struct node{
int nxt,to,w;
}e[maxn<<1];
int tot=1,head[maxn];
inline void add_edge(int from,int to,int w){
e[++tot]=node{head[from],to,w},head[from]=tot;
} int n,m,k,pre[maxn],vis[maxn];
long long d[maxn];
vector<int> ans;
priority_queue<P> q; void read_and_parse(){
n=read(),m=read(),k=read();
for(int i=1;i<=m;i++){
int from=read(),to=read(),w=read();
add_edge(from,to,w),add_edge(to,from,w);
}
} void dij(){
for(int i=2;i<=n;i++)d[i]=1e15;
q.push(make_pair(0,1));
while(q.size()&&ans.size()<k){
int u=q.top().second;q.pop();
if(vis[u])continue;
if(u^1)ans.push_back(pre[u]/2);//ans中存边的编号
vis[u]=1;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to,w=e[i].w;
if(d[v]>d[u]+w){
d[v]=d[u]+w;
pre[v]=i;
q.push(make_pair(-d[v],v));
}
}
}
} void solve(){
dij();
k=ans.size();
printf("%d\n",k);
for(int i=0;i<k;i++)printf("%d ",ans[i]);
} int main(){
read_and_parse();
solve();
return 0;
}

【CF1076D】Edge Deletion 最短路+贪心的更多相关文章

  1. CF1076D Edge Deletion

    洛谷传送门 cf传送门 这道题作为div.2的D题,被我一眼秒了我觉得十分荣幸,然后就开始写,然后就写了好久. AC之后看网上的题解,发现好多最短路树的,猛然发现我写的好复杂啊,结果还看到了直接一遍d ...

  2. CF1076D Edge Deletion 最短路径树+bfs

    题目描述 You are given an undirected connected weighted graph consisting of n n n vertices and m m m edg ...

  3. CF1076D Edge Deletion 最短路树

    问题描述 Codeforces 洛谷(有翻译) 题解 最短路树,是一棵在最短路过程中构建的树. 在\(\mathrm{Dijkstra}\)过程中,如果最终点\(y\)是由点\(x\)转移得到的,则在 ...

  4. Codeforces Round #303 (Div. 2) E. Paths and Trees 最短路+贪心

    题目链接: 题目 E. Paths and Trees time limit per test 3 seconds memory limit per test 256 megabytes inputs ...

  5. Codeforces 1076D Edge Deletion(最短路树)

    题目链接:Edge Deletion 题意:给定一张n个顶点,m条边的带权无向图,已知从顶点1到各个顶点的最短路径为di,现要求保留最多k条边,使得从顶点1到各个顶点的最短距离为di的顶点最多.输出m ...

  6. Codeforces 1076D Edge Deletion 【最短路+贪心】

    <题目链接> 题目大意: n个点,m条边的无向图,现在需要删除一些边,使得剩下的边数不能超过K条.1点为起点,如果1到 i 点的最短距离与删除边之前的最短距离相同,则称 i 为 " ...

  7. 1076D Edge Deletion 【最短路】

    题目:戳这里 题意:求出1到所有点的最短路径后,把边减到小于等于k条,问保留哪些边可以使仍存在的最短路径最多. 解题思路:这题就是考求最短路的原理.比如dijkstra,用优先队列优化后存在队列中的前 ...

  8. Edge Deletion CodeForces - 1076D(水最短路)

    题意: 设从1到每个点的最短距离为d,求删除几条边后仍然使1到每个点的距离为d,使得剩下的边最多为k 解析: 先求来一遍spfa,然后bfs遍历每条路,如果d[v] == d[u] + Node[i] ...

  9. Educational Codeforces Round 54 (Rated for Div. 2) D:Edge Deletion

    题目链接:http://codeforces.com/contest/1076/problem/D 题意:给一个n个点,m条边的无向图.要求保留最多k条边,使得其他点到1点的最短路剩余最多. 思路:当 ...

随机推荐

  1. JAVA核心:内存、比较和Final

    1.java是如何管理内存的 java的内存管理就是对象的分配和释放问题.(其中包括两部分) 分配:内存的分配是由程序完成的,程序员需要通过关键字new为每个对象申请内存空间(基本类型除外),所有的对 ...

  2. C#_反射机制

    一:反射的定义 审查元数据并收集关于它的类型信息的能力.元数据(编译以后的最基本数据单元)就是一大堆的表,当编译程序集或者模块时,编译器会创建一个类定义表,一个字段定义表,和一个方法定义表等. Sys ...

  3. Bash : 冒泡排序

    冒泡排序是非常基础的排序算法,本文我们看看在 Bash 脚本中如何写冒泡排序.本文的演示环境为 ubuntu 16.04. 冒泡排序的简要描述如下: 通过连续的比较对数组中的元素进行排序 比较两个相邻 ...

  4. C_数据结构_数组

    //数组 # include <stdio.h> # include <malloc.h> //包含了 malloc 函数 # include <stdlib.h> ...

  5. use_frameworks!和#use_frameworks!的区别、解决Swift项目中use_frameworks!冲突的问题

    use_frameworks!和#use_frameworks!的区别 转自:https://www.jianshu.com/p/0ae58a477459 1. 用cocoapods 导入swift ...

  6. Final 个人最终作业。

    1.对软件工程M1/M2做一个总结 在M1阶段,我在C705组.M1阶段我与黄漠源同学结对,一起完成提取关键词算法的优化.最初我们一起测试提取关键词算法功能的实现效果,随后我主要负责从网络上搜寻并整理 ...

  7. 【个人总结】软件工程M1/M2总结

    个人博客连接: http://www.cnblogs.com/lwq12061168/p/4094252.html http://www.cnblogs.com/lwq12061168/p/40284 ...

  8. C#获取当月第一天和最后一天

    当月第一天0时0分0秒: DateTime.Now.AddDays(1 - DateTime.Now.Day).Date 当月最后一天23时59分59秒: DateTime.Now.AddDays(1 ...

  9. 【论文笔记】Domain Adaptation via Transfer Component Analysis

    论文题目:<Domain Adaptation via Transfer Component Analysis> 论文作者:Sinno Jialin Pan, Ivor W. Tsang, ...

  10. David Silver强化学习Lecture1:强化学习简介

    课件:Lecture 1: Introduction to Reinforcement Learning 视频:David Silver深度强化学习第1课 - 简介 (中文字幕) 强化学习的特征 作为 ...