Laurenty and Shop

CodeForces - 586B

A little boy Laurenty has been playing his favourite game Nota for quite a while and is now very hungry. The boy wants to make sausage and cheese sandwiches, but first, he needs to buy a sausage and some cheese.

The town where Laurenty lives in is not large. The houses in it are located in two rows, n houses in each row. Laurenty lives in the very last house of the second row. The only shop in town is placed in the first house of the first row.

The first and second rows are separated with the main avenue of the city. The adjacent houses of one row are separated by streets.

Each crosswalk of a street or an avenue has some traffic lights. In order to cross the street, you need to press a button on the traffic light, wait for a while for the green light and cross the street. Different traffic lights can have different waiting time.

The traffic light on the crosswalk from the j-th house of the i-th row to the (j + 1)-th house of the same row has waiting time equal to aij (1 ≤ i ≤ 2, 1 ≤ j ≤ n - 1). For the traffic light on the crossing from the j-th house of one row to the j-th house of another row the waiting time equals bj (1 ≤ j ≤ n). The city doesn't have any other crossings.

The boy wants to get to the store, buy the products and go back. The main avenue of the city is wide enough, so the boy wants to cross it exactly once on the way to the store and exactly once on the way back home. The boy would get bored if he had to walk the same way again, so he wants the way home to be different from the way to the store in at least one crossing.

 Figure to the first sample.

Help Laurenty determine the minimum total time he needs to wait at the crossroads.

Input

The first line of the input contains integer n (2 ≤ n ≤ 50) — the number of houses in each row.

Each of the next two lines contains n - 1 space-separated integer — values aij (1 ≤ aij ≤ 100).

The last line contains n space-separated integers bj (1 ≤ bj ≤ 100).

Output

Print a single integer — the least total time Laurenty needs to wait at the crossroads, given that he crosses the avenue only once both on his way to the store and on his way back home.

Examples

Input
4
1 2 3
3 2 1
3 2 2 3
Output
12
Input
3
1 2
3 3
2 1 3
Output
11
Input
2
1
1
1 1
Output
4

Note

The first sample is shown on the figure above.

In the second sample, Laurenty's path can look as follows:

  • Laurenty crosses the avenue, the waiting time is 3;
  • Laurenty uses the second crossing in the first row, the waiting time is 2;
  • Laurenty uses the first crossing in the first row, the waiting time is 1;
  • Laurenty uses the first crossing in the first row, the waiting time is 1;
  • Laurenty crosses the avenue, the waiting time is 1;
  • Laurenty uses the second crossing in the second row, the waiting time is 3.

In total we get that the answer equals 11.

In the last sample Laurenty visits all the crossings, so the answer is 4.

sol:只有两行根本用不着写最短路,弄一个前缀和和一个后缀和扫两遍,找到最短路和次短路即可

#include <bits/stdc++.h>
using namespace std;
typedef int ll;
inline ll read()
{
ll s=;
bool f=;
char ch=' ';
while(!isdigit(ch))
{
f|=(ch=='-'); ch=getchar();
}
while(isdigit(ch))
{
s=(s<<)+(s<<)+(ch^); ch=getchar();
}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(ll x)
{
if(x<)
{
putchar('-'); x=-x;
}
if(x<)
{
putchar(x+''); return;
}
write(x/);
putchar((x%)+'');
return;
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
const int N=,inf=0x3f3f3f3f;
int n,Dis[][N],Time[N];
int Qzh[][N],Hzh[][N];
int main()
{
int i,j,ans=;
R(n);
for(i=;i<=;i++)
{
for(j=;j<=n;j++) R(Dis[i][j]);
}
for(i=;i<=;i++)
{
Qzh[i][]=; for(j=;j<=n;j++) Qzh[i][j]=Qzh[i][j-]+Dis[i][j];
Hzh[i][n]=; for(j=n-;j>=;j--) Hzh[i][j]=Hzh[i][j+]+Dis[i][j+];
}
for(i=;i<=n;i++) R(Time[i]);
int Zuix=-,Cix=-;
for(i=;i<=n;i++) if(Zuix==-||Hzh[][i]+Time[i]+Qzh[][i]<Hzh[][Zuix]+Time[Zuix]+Qzh[][Zuix])
{
Zuix=i;
}
ans+=Hzh[][Zuix]+Time[Zuix]+Qzh[][Zuix];
for(i=;i<=n;i++) if(Cix==-||Qzh[][i]+Time[i]+Hzh[][i]<Qzh[][Cix]+Time[Cix]+Hzh[][Cix])
{
if(i==Zuix) continue;
Cix=i;
}
ans+=Qzh[][Cix]+Time[Cix]+Hzh[][Cix];
Wl(ans);
return ;
}
/*
input
4
1 2 3
3 2 1
3 2 2 3
output
12 input
3
1 2
3 3
2 1 3
output
11 input
2
1
1
1 1
output
4
*/

codeforces586B的更多相关文章

随机推荐

  1. MySQL 基础四 存储过程

    -- 定义存储过程 DELIMITER // CREATE PROCEDURE query_student2() BEGIN SELECT * FROM student; END // DELIMIT ...

  2. 【Codeforces 467D】Fedor and Essay

    Codeforces 467 D 题意:给\(m​\)个单词,以及\(n​\)个置换关系,问将\(m​\)个单词替换多次后其中所含的最少的\(R​\)的数量以及满足这个数量的最短总长度 思路:首先将置 ...

  3. MySQL(一)MySQL基础介绍

    最近的学习内容是数据库相关的一些知识,主要以MySQL为主,参考书籍——<MySQL必知必会> MySQL学习及下载地址:https://dev.mysql.com/ MySQL学习使用注 ...

  4. mysql分表操作

    一般分表操作有垂直拆分和水平拆分.顾名思义. 1.  垂直拆分是指,这个表的列,即字段,要拆分成两个或多个表. 这个应用场景比如:这个表字段,几个都是int.datetime等,有那么一个是text类 ...

  5. Unity 协程停不了?

    你是不是遇到过协程停不了的情况?你是直接调用IEnumerator方法,如下? void Start () { StartCoroutine(IETest01()); StartCoroutine(I ...

  6. odoo系统中name_search和name_get用法

    自动带出工序和工序序号,两个条件都能搜索,并且两个都带出来显示在前端: # 输入工序序号会自动带出工序名// def name_search(self, cr,user,name='', args=N ...

  7. Luogu2792 JSOI2008 小店购物 最小树形图

    传送门 被题意杀 本以为一个种类的物品一定要一起买 看了题解才知道可以先把所有要买的物品买一个,剩下要买的物品就可以得到这个种类的物品能够得到的最大优惠-- 所以现在只需要知道:第一次买所有物品一遍时 ...

  8. Luogu2993 FJOI2014 最短路径树问题 最短路树、长链剖分

    传送门 强行二合一最为致命 第一问直接最短路+$DFS$解决 考虑第二问,与深度相关,可以考虑长链剖分. 设$f_{i,j}$表示长度为$i$,经过边数为$j$时的最大边权和,考虑到每一次从重儿子转移 ...

  9. POI Sax 事件驱动解析Excel2003文件

    POI事件驱动解析Excel文件 package com.boguan.bte.util.excel; import java.io.FileInputStream; import java.io.I ...

  10. EZ 2018 06 24 NOIP2018 模拟赛(二十)

    很久之前写的一套题了,由于今天的时间太多了,所以记起来就写掉算了. 这一场尽管T2写炸了,但也莫名Rank4涨了Rating.不过还是自己太菜. A. 环游世界 首先我们先排个序,想一下如果不用走回来 ...