一、单成分单变量高斯模型

二、单成分多变量高斯模型

若协方差矩阵为对角矩阵且对角线上值相等,两变量高斯分布的等值线为圆形。

若协方差矩阵为对角矩阵且对角线上值不等,两变量高斯分布的等值线为椭圆形,

长轴平行于取较大值的变量所在的轴,短轴平行于取较小值的变量所在的轴。

若协方差矩阵为非对角矩阵,表明变量之间存在相关性,相关系数取-1到1之间的非0值。

上图中两变量高斯分布的等值线长轴平行于x1=-0.5x2这条直线。

三、多成分多变量高斯混合模型

基于先验概率P(m)选择成分后,基于P(X|m)生成数据。

为减少参数数目,常假设协方差矩阵为对角矩阵且对角线取值相等。

如果哪个成分生成哪个数据的对应关系已知---强制对齐

通常情况下,这种生成数据的对应关系是未知的,即存在隐变量,

这时使用EM替代MLE进行参数估计。

E步其实计算的是P(m|X)---soft alignment

强制对齐下,将X分配给其中的一个成分;

软分配下,将X以一定的概率值分配给每个成分。

用GMM对数据进行拟合比用单个Gaussian拟合数据更加准确。

GMM基础的更多相关文章

  1. C++基础——模拟事务 (1)COMMAND模式

    =================================版权声明================================= 版权声明:原创文章 禁止转载  请通过右侧公告中的“联系邮 ...

  2. 高斯混合模型(GMM)

    复习: 1.概率密度函数,密度函数,概率分布函数和累计分布函数 概率密度函数一般以大写“PDF”(Probability Density Function),也称概率分布函数,有的时候又简称概率分布函 ...

  3. 贝叶斯来理解高斯混合模型GMM

    最近学习基础算法<统计学习方法>,看到利用EM算法估计高斯混合模型(GMM)的时候,发现利用贝叶斯的来理解高斯混合模型的应用其实非常合适. 首先,假设对于贝叶斯比较熟悉,对高斯分布也熟悉. ...

  4. 语音识别传统方法(GMM+HMM+NGRAM)概述

    春节后到现在近两个月了,没有更新博客,主要是因为工作的关注点正从传统语音(语音通信)转向智能语音(语音识别).部门起了个新项目,要用到语音识别(准备基于Kaldi来做).我们之前做的传统音频已基本成熟 ...

  5. 4. EM算法-高斯混合模型GMM详细代码实现

    1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 EM ...

  6. GMM 的EM 实现

    算法逻辑在这里: http://www.cnblogs.com/Azhu/p/4131733.html 贴之前先说下,本来呢是打算自己写一个的,在matlab 上,不过,实在是写不出来那么高效和健壮的 ...

  7. AI工程师基础知识100题

    100道AI基础面试题 1.协方差和相关性有什么区别? 解析: 相关性是协方差的标准化格式.协方差本身很难做比较.例如:如果我们计算工资($)和年龄(岁)的协方差,因为这两个变量有不同的度量,所以我们 ...

  8. 4-EM算法原理及利用EM求解GMM参数过程

    1.极大似然估计 原理:假设在一个罐子中放着许多白球和黑球,并假定已经知道两种球的数目之比为1:3但是不知道那种颜色的球多.如果用放回抽样方法从罐中取5个球,观察结果为:黑.白.黑.黑.黑,估计取到黑 ...

  9. Spark MLib完整基础入门教程

    Spark MLib 在Spark下进行机器学习,必然无法离开其提供的MLlib框架,所以接下来我们将以本框架为基础进行实际的讲解.首先我们需要了解其中最基本的结构类型,即转换器.估计器.评估器和流水 ...

随机推荐

  1. R语言-优化作图

    par()函数:用来设置画图参数的函数par()的作用直到画板被关闭为止 1.设置背景颜色 #设置背景颜色 > par(bg="gray") #设置画板背景色 > pl ...

  2. Python基础-python变量(三)

    一.什么是变量 顾名思义:变量就是可以改变的量 如: z=0 x=5 y=5 z=x+y(z=?) 上方的z就是变量,其值可以改变. 通俗的理解就是: 变量 = 生活中的容器(饭盒) 变量赋值= 把东 ...

  3. laravel简书(1)

    Laravel的社区生态 中文社区(http://laravel-china.org) 5.4中文文档(http://d.laravel-china.org/docs/5.4) Laravel源码地址 ...

  4. Mysql——数据库和数据表的基本操作

    /*创建数据库--- CREATE DATABASE 数据库名;*/ CREATE DATABASE itschool; /*查看已经存在的数据库*/ SHOW DATABASES; /*查看某个已创 ...

  5. 四 分析easyswoole源码(启动服务&Cache组件原理)

    前文提到的在系统设置Cache组件 Cache::getInstance()的时候,会去调用processManager去创建Cache的进程,然后以管道通信的方式进行设置缓存和获取缓存. Cache ...

  6. 如何学好游戏3D引擎编程

    注:本文是网上看到的一篇文章,感觉写的很好,因此收藏了下来 <如何学好游戏3D引擎编程>此篇文章献给那些为了游戏编程不怕困难的热血青年,它的神秘要我永远不间断的去挑战自我,超越自我,这样才 ...

  7. 安装配置python环境,并跑一个推荐系统的例子

    1.官网下载python2.7,安装完后,在环境变量Path中加上这个路径 在控制台输入python,出现版本信息,就成功了. 2.我使用的是 pycharm,注册后,在 把自己的python.exe ...

  8. Eclipse Golang 开发环境搭建 GoClipse 插件

    Windows平台 下载完成后,直接双击安装即可 默认情况下,.msi文件会安装在 C:\Go 目录下.可以将 C:\Go\bin 目录添加到环境变量 PATH 中,方便调用命令. Go 里面有两个非 ...

  9. Mac 电脑设置显示路径

    # 设置 defaults write com.apple.finder _FXShowPosixPathInTitle -bool TRUE;killall Finder # 删除 defaults ...

  10. ----关于css中常见单位----

    1.px 像素,绝对单位长度,可设定固定的长度大小.(像素是相对于显示器屏幕分辨率而言) 所有浏览器都显示为一样大小. eg: html: <p>这是一段正常段落</p> &l ...