【xsy2303】呀 dp
题目大意:你需要构造一个长度为$n$的排列$A$,使得里面包含有子序列$B$(子序列$B$为一个给定的$1$到$m$的排列),且对于每个$i$,有$A[A[i]]=i$,问有多少种方案方案。
数据范围:$n≤10^7$,$m≤500$,答案对$10^9+7$取模
我们首先不考虑有m的存在,考虑如何构造一个符合条件的序列$A$。
我们发现我们可以DP,设$f[i]$表示有多少种长度为i的序列满足$A[A[i]]=i$。
对于第$i$个数,我们可以考虑把它填在原位,或者放在第j个位置,然后在$A[i]$处填上$j$。
根据这个,不难推出$f[i]=(i-1)f[i-2]+f[i-1]$。
我们下面考虑,序列$B$的前$k$个数,位于$A$中前$m$个位置,剩余的$m-k$个,位于后$n-m$个位置。
我们发现,对于剩余的$m-k$个数,对应的$A_B[i]$,都会被占用,用来填(填写了$B[i]$的位置)。
所以我们需要在前$m$个位置里,用恰好$k$个位置,按顺序填出序列$B$前$k$个数字。
不难发现,至多只有一种填法。
对于$B[i]$,我们找到序列$A$中第i个可以填数的地方,直接填入$B[i]$即可。
最后$O(m)$扫一遍判断即可。
如果可行,那么剩下的$n-k$个位置中,需要找出$m-k$个位置放置$B[k+1],B[k+2].....B[m]$,并且在$A[B[k+1]]$等地方填上它们的位置。
剩下的$n-2m+k$个位置,就可以随便填>m的数了,方案数显然是$f[n-2m+k]$
所以方案数为$\binom{n-k}{m-k}\times f[n-2m+k]$。
我们对于每个不超过m的k全部处理一遍就可以了。
时间复杂度:$O(n+m^2)$
#include<bits/stdc++.h>
#define MOD 1000000007
#define L long long
#define M 10000005
using namespace std; L fac[M]={},invfac[M]={},f[M]={};
L pow_mod(L x,L k){L ans=;for(;k;k>>=,x=x*x%MOD) if(k&) ans=ans*x%MOD; return ans;}
L C(int n,int m){return fac[n]*invfac[m]%MOD*invfac[n-m]%MOD;} L mark[M]={},b[M]={},a[M]={},ans=,n,m;
void solve(int k){
if(n-m<m-k) return;
for(int i=,j=;i<=k;i++,j++){
while(!mark[j]) j++;
a[j]=b[i];
}
for(int i=;i<=m;i++)
if(mark[i]&&a[a[i]]!=i) return;
ans=(ans+C(n-m,m-k)*f[n-m-m+k])%MOD;
}
int main(){
fac[]=; for(int i=;i<M;i++) fac[i]=fac[i-]*i%MOD;
invfac[M-]=pow_mod(fac[M-],MOD-);
for(int i=M-;~i;i--) invfac[i]=invfac[i+]*(i+)%MOD;
f[]=f[]=; for(int i=;i<M;i++) f[i]=(f[i-]+f[i-]*(i-))%MOD; scanf("%d%d",&n,&m);
for(int i=;i<=m;i++) scanf("%d",b+i);
for(int k=;k<=m;k++){
mark[b[k]]=;
solve(k);
}
cout<<ans<<endl;
}
【xsy2303】呀 dp的更多相关文章
- BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 4142 Solved: 1964[Submit][Statu ...
- 2013 Asia Changsha Regional Contest---Josephina and RPG(DP)
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4800 Problem Description A role-playing game (RPG and ...
- AEAI DP V3.7.0 发布,开源综合应用开发平台
1 升级说明 AEAI DP 3.7版本是AEAI DP一个里程碑版本,基于JDK1.7开发,在本版本中新增支持Rest服务开发机制(默认支持WebService服务开发机制),且支持WS服务.RS ...
- AEAI DP V3.6.0 升级说明,开源综合应用开发平台
AEAI DP综合应用开发平台是一款扩展开发工具,专门用于开发MIS类的Java Web应用,本次发版的AEAI DP_v3.6.0版本为AEAI DP _v3.5.0版本的升级版本,该产品现已开源并 ...
- BZOJ 1597: [Usaco2008 Mar]土地购买 [斜率优化DP]
1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4026 Solved: 1473[Submit] ...
- [斜率优化DP]【学习笔记】【更新中】
参考资料: 1.元旦集训的课件已经很好了 http://files.cnblogs.com/files/candy99/dp.pdf 2.http://www.cnblogs.com/MashiroS ...
- BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9812 Solved: 3978[Submit][St ...
- px、dp和sp,这些单位有什么区别?
DP 这个是最常用但也最难理解的尺寸单位.它与“像素密度”密切相关,所以 首先我们解释一下什么是像素密度.假设有一部手机,屏幕的物理尺寸为1.5英寸x2英寸,屏幕分辨率为240x320,则我们可以计算 ...
- android px转换为dip/dp
/** * 根据手机的分辨率从 dp 的单位 转成为 px(像素) */ public int dipTopx(Context context, float dpValue) { final floa ...
随机推荐
- Deploy, Issue and Transfer Tokens
[Deploy, Issue and Transfer Tokens] 本例使用 eosio.token 合约来尝试发行Token. 1.签出 eosio.contracts. git clone h ...
- Zabbix告警脚本-微信
1.weixin.sh [root@iot-svndata02 bin]# cat weixin.sh #!/bin/bash ###SCRIPT_NAME:weixin.sh### ###send ...
- python 模块定义导入
1.定义模块:用来从逻辑上组织python代码(变量.函数.类.逻辑:实现一个功能),本质就是:.py结尾的python文件(文件名:test.py,对应的模块名:test)包:本质就是一个目录(必须 ...
- react项目请求数据的fetch的使用
准备三个文件(封装请求函数),然后测试一下,能不能调用数据 第一个文件 request.js import 'whatwg-fetch'; /** * Parses the JSON returne ...
- python--事务操作
#coding=utf-8 import sys import MySQLdb class TransferMoney(object): def __init__(self,conn): self.c ...
- CentOS7 安装oracle客户端
1.本机环境CentOS7 64 [root@localhost etc]# uname -a Linux localhost.localdomain 3.10.0-693.el7.x86_64 #1 ...
- [费用流][NOI2008]志愿者招募
志愿者招募 题目描述 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿者.经过估算,这个项目需要N 天才能完 ...
- HOSTNAME问题 和yum配置163源的操作 安装lsb_release,KSH,CSH
HOSTNAME 在 /etc/hosts 里添加一行 127.0.0.1 yourhostname yum配置 来自http://www.cnblogs.com/wutengbiao/p/41889 ...
- win10自带输入法的标点符号切换
快捷键是ctrl+句号 然后开启设置,把中文也用英文标点也选上.
- s6-1 传输层概述
6.1 传输层概述 传输层概述 传输层是整个协议栈(TCP/IP)的核心 传输层的任务是提供可靠的.高效的数据传输 传输层的地位 网络层.传输层和应用层 传输层在应用层和网络层之间提供了无缝接口 ...