ML.NET 0.9已于上周发布,距离上次0.8版本的发布只有一个多月,此次增加的新特性主要包括特征贡献计算,模型可解释性增强,ONNX转换对GPU的支持,Visual Studio ML.NET项目模板预览,以及API改进。

特征贡献计算

特征贡献计算(Feature Contribution Calculation)通过决定每个特征对模型分数的贡献,从而显示哪些特征在对特别个体的数据样本的模型预测最有影响力。

当你面临历史数据中有许多特征时而又想选择使用最重要的特征时,特征贡献计算显得十分重要。因为使用太多的特征(尤其是包含对模型没有影响的特征)会减少模型的性能与准确性。因此,使用特征贡献计算你可以从原始特征集中识别最有影响力的正向与负向的贡献。

示例代码:

// 创建特征贡献计算器
// 对已有训练模型参数的所有特征进行计算贡献 var featureContributionCalculator = mlContext.Model.Explainability.FeatureContributionCalculation(model.Model, model.FeatureColumn, numPositiveContributions: 11, normalize: false); // FeatureContributionCalculatingEstimator可被用作管道中的一个步骤
// 被FeatureContributionCalculatingEstimator保存的特征将在FeatureContribution列中 var pipeline = mlContext.Model.Explainability.FeatureContributionCalculation(model.Model, model.FeatureColumn, numPositiveContributions: 11)
.Append(mlContext.Regression.Trainers.OrdinaryLeastSquares(featureColumn: "FeatureContributions"));

输出结果可下:

The output of the above code is:

  Label   Score   BiggestFeature         Value   Weight   Contribution

  24.00   27.74   RoomsPerDwelling        6.58    98.55   39.95
21.60 23.85 RoomsPerDwelling 6.42 98.55 39.01
34.70 29.29 RoomsPerDwelling 7.19 98.55 43.65
33.40 27.17 RoomsPerDwelling 7.00 98.55 42.52

对于特征选取的模型可解释性的增强

除了特征贡献计算之外,排列特征重要性(PFI)与广义加性模型(GAM)也有加强。

  • 排列特征重要性支持大多数学习任务:回归,二元分类,多元分类与排序。
  • 排列特征重要性允许你在特征重要性分数上计算置信区间,以便可以得到更好的平均值估计。
  • 广义加性模型支持特征贡献计算,以便你可以迅速看到哪些特征驱动个体的预测。

增加对ONNX转换的GPU支持

在ML.NET 0.9中通过集成高性能的ONNX运行时库添加了使用激活GPU的CUDA 10.0运行ONNX模型的功能。ONNX模型的GPU支持现在已经可以在Windows 64位系统上使用,不久之后将支持Linux与Mac系统。

新的Visual Studio ML.NET项目模板预览

Visual Studio项目模板现在推出了支持ML.NET的预览版本。下载地址

模板涵盖以下场景:

  • ML.NET控制台应用程序
  • ML.NET模型类库

其它API的改进

简化文本数据加载

ML.NET 0.9以前你需要显示的标明列名:

var mlContext = new MLContext();

var reader = mlContext.Data.CreateTextReader(new[] {
new TextLoader.Column("IsOver50K", DataKind.BL, 0),
new TextLoader.Column("Workclass", DataKind.TX, 1)
},hasHeader: true
);
var dataView = reader.Read(dataPath);

现在你可以直接使用泛型:

var mlContext = new MLContext();

var dataView = mlContext.Data.ReadFromTextFile<InspectedRow>(dataPath, hasHeader: true);

private class InspectedRow
{
[LoadColumn(0)]
public bool IsOver50K { get; set; }
[LoadColumn(1)]
public string Workclass { get; set; }
}

获取预测置信因子

通过Calibrator Estimators,除了在评估模型质量时可以获得分数列之外,还可以得到置信因子。

例如,你可以获得每个预测值的概率:

Score - 0.458968    Probability 0.4670409
Score - 0.7022135 Probability 0.3912723
Score 1.138822 Probability 0.8703266

新的键-值匹配估测器及转换

新特性替换了TermLookupTransform,同时提供了指定值之间匹配的新方法。你可以指定键列与值列的匹配关系,但需保证两者数量一致。

其它的改进与变化

  • 允许ML.NET在Windows Nano容器及Windows机器上运行,而无需安装Visual C++运行时。
  • 在包含模型信息的DataView构造器中提供元数据支持,比如被编码为元数据的评估指标可以通过代码解析出来,由此能够使用任何工具进行可视化。

ML.NET 0.9特性简介的更多相关文章

  1. ML.NET 0.8特性简介

    本周.NET生态圈内的更新源源不断,除了.NET Core 2.2,ASP.NET Core 2.2和Entity Framework Core 2.2之外,ML.NET 0.8也一并登上舞台. 新的 ...

  2. ML.NET 0.10特性简介

    IDataView被单独作为一个类库包 IDataView组件为表格式数据提供了非常高效的处理方式,尤其是用于机器学习和高级分析应用.它被设计为可以高效地处理高维数据和大型数据集.并且也适合处理属于更 ...

  3. JDK5.0新特性 (Day_07)

      JDK5.0新特性   目录 静态导入 自动装箱/拆箱 for-each循环 可变参数 枚举 JDK 5.0 新特性简介 JDK 5.0 的一个重要主题就是通过新增一些特性来简化开发,这些特性包括 ...

  4. JDK5.0新特性1

    目录 静态导入 自动装箱/拆箱 for-each循环 可变参数 枚举 JDK 5.0 新特性简介 JDK 5.0 的一个重要主题就是通过新增一些特性来简化开发,这些特性包括: 静态导入 自动装箱/拆箱 ...

  5. 返璞归真 asp.net mvc (13) - asp.net mvc 5.0 新特性

    [索引页][源码下载] 返璞归真 asp.net mvc (13) - asp.net mvc 5.0 新特性 作者:webabcd 介绍asp.net mvc 之 asp.net mvc 5.0 新 ...

  6. c# 6.0新特性(一)

    写在前面 接近年底了,基本上没什么活了,就学点新东西,就想着了解下c# 6.0的新特性.在code project上看到了一篇不错的文章,就准备翻译一下,顺便照着学习学习.废话不多说,直奔主题. 原文 ...

  7. Hadoop3.0新特性介绍,比Spark快10倍的Hadoop3.0新特性

    Hadoop3.0新特性介绍,比Spark快10倍的Hadoop3.0新特性 Apache hadoop 项目组最新消息,hadoop3.x以后将会调整方案架构,将Mapreduce 基于内存+io+ ...

  8. C# Winform开发框架企业版V4.0新特性

    企业版V4.0 - 新特性 C/S系统开发框架-企业版 V4.0 (Enterprise Edition) 简介: http://www.csframework.com/cs-framework-4. ...

  9. ES6新特性简介

    ES6新特性简介 环境安装 npm install -g babel npm install -g babel-node //提供基于node的REPL环境 //创建 .babelrc 文件 {&qu ...

随机推荐

  1. C语言结构体变量私有化

    操作系统 : CentOS7.3.1611_x64 gcc版本 :4.8.5 问题描述 C语言结构体定义中的变量默认是公有(Public)属性,如果实现成员变量的私有(Private)化? 解决方案 ...

  2. ubuntu install google-chrome-stable

    google-chrome-stable is available on a 3rd Party Repository: Google Chrome (for Stable). Follow the ...

  3. MySQL读取配置文件的顺序、启动方式、启动原理

    一.MySQL读取配置文件的顺序 读取顺序:/etc/my.cnf > /etc/mysql/my.cnf > /usr/etc/my.cnf > ~/.my.cnf 命令验证:[r ...

  4. 分析轮子(八)- List.java 各种遍历方式及遍历时移除元素的方法

    注:玩的是JDK1.7版本 1:先尝栗子,再分析,代码简单,注释清晰,可自玩一下 /** * @description:测试集合遍历和移除元素的方式 * @author:godtrue * @crea ...

  5. hive set 常用参数汇总

    1. set hive.auto.convert.join = true; mapJoin的主要意思就是,当链接的两个表是一个比较小的表和一个特别大的表的时候,我们把比较小的table直接放到内存中去 ...

  6. TensorFlow官网无法访问

    相信很多搞深度学习的小伙伴最近都为访问不了 TensorFlow官网 而苦恼吧!虽然网上也给出了一些方法,但是却缺少一个很重要的步骤.接下来,我就给大家讲解一个完整的过程,大牛绕过. 1.更改Host ...

  7. Canvas入门到高级详解(下)

    四. Canvas 开发库封装 4.1 封装常用的绘制函数 4.1.1 封装一个矩形 //思考:我们用到的矩形需要哪些绘制的东西呢? 矩形的 x.y坐标 矩形的宽高 矩形的边框的线条样式.线条宽度 矩 ...

  8. zookeeper入门及使用(一)- 安装及操作

    zookeeper是什么? highly reliable distributed coordination,用来做高可靠的分布式协调者,可用来: 业务发现(service discovery)找到分 ...

  9. Linux服务器重启后MySQL启动失败

    Redirecting to /bin/systemctl start  mysql.service Job for mysqld.service failed because the control ...

  10. 删除maven仓库中的LastUpdated文件

    转自:http://www.oschina.net/code/snippet_151849_49131 @echo off rem create by sunhao(sunhao.java@gmail ...