贝尔数

 

贝尔数埃里克·坦普尔·贝尔(Eric Temple Bell)为名,是组合数学中的一组整数数列,开首是(OEIS的A000110数列):

 

Bell Number

Bn基数n的集合的划分方法的数目。集合S的一个划分是定义为S的两两不相交的非空子集的族,它们的并是S。例如B3 = 5因为3个元素的集合{abc}有5种不同的划分方法:

{{a}, {b}, {c}}
{{a}, {bc}}
{{b}, {ac}}
{{c}, {ab}}
{{abc}};

B0是1因为空集正好有1种划分方法。空集的每个成员都是非空集合(这是Vacuous truth,因为空集实际上没有成员),而它们的并是空集本身。所以空集是它的唯一划分。

贝尔数适合递推公式:

上述组合公式的证明:

可以这样来想,B_{n+1}是含有n+1个元素集合的划分的个数,考虑元素

假设他被单独划分到一类,那么还剩下n个元素,这种情况下划分个数为

假设他和某一个元素被划分为一类,那么还剩下n-1个元素,这种情况下划分个数为 

假设他和某两个元素被划分为一类,那么还剩下n-2个元素,这种情况下划分个数为 

依次类推,得到了上述组合公式

它们也适合“Dobinski公式”:

期望值为1的泊松分数n次矩。

它们也适合“Touchard同余”:若p是任意质数,那么

每个贝尔数都是"第二类Stirling数"的和

Stirling数Snk)是把基数为n的集划分为正好k个非空集的方法的数目。

把任一概率分布n以首n累积量表示的多项式,其系数和正是第n个贝尔数。这种数划分的方法不像用Stirling数那个方法粗糙。

贝尔数的指数母函数

贝尔三角形[编辑]

用以下方法建构一个三角矩阵(形式类似杨辉三角形):

  • 第一行第一项是1(
  • 对于n>1,第n行第一项等同第n-1行最后一项。(
  • 对于m,n>1,第n行第m项等于它左边和左上方的两个数之和。(

结果如下:(OEIS:A011971

每行首项是贝尔数。每行之和是第二类Stirling数

这个三角形称为贝尔三角形、Aitken阵列或Peirce三角形(Bell triangle, Aitken's array, Peirce triangle)。

参见[编辑]

参考[编辑]

贝尔数(来自维基百科)& Stirling数的更多相关文章

  1. 自然数幂和——第一类Stirling数和第二类Stirling数

    第一类Stirling数 首先设 $$S_k(n)=\sum_{i=0}^ni^k$$ 根据第一类斯特林数的定义(P是排列数,C是组合数,s是Stirling) $$C_n^k={P_n^k\over ...

  2. arp:地址解析协议(Address Resolution Protocol)(来自维基百科)

    地址解析协议(Address Resolution Protocol),其基本功能为通过目标设备的IP地址,查询目标设备的MAC地址,以保证通信的顺利进行。它是IPv4中网络层必不可少的协议,不过在I ...

  3. web框架--来自维基百科

  4. Bell(hdu4767+矩阵+中国剩余定理+bell数+Stirling数+欧几里德)

    Bell Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status  ...

  5. 第一类和第二类Stirling数

    做了老是忘…… 实际问题: 找维基百科.百度百科…… 第一类Stirling数 n个元素构成m个圆排列 S(n,m)=S(n-1,m-1)+(n-1)*S(n-1,m) 初始 S(0,0)=1 S(n ...

  6. [总结] 第二类Stirling数

    上一道例题 我们来介绍第二类Stirling数 定义 第二类Stirling数实际上是集合的一个拆分,表示将n个不同的元素拆分成m个集合的方案数,记为 或者 .和第一类Stirling数不同的是,集合 ...

  7. Stirling数

    第一类: 定义 第一类Stirling数表示表示将 n 个不同元素构成m个圆排列的数目.又根据正负性分为无符号第一类Stirling数    和带符号第一类Stirling数    .有无符号Stir ...

  8. Bell数和Stirling数

    前面说到了Catalan数,现在来了一个Bell数和Stirling数.什么是Bell数,什么是Stirling数呢?两者的关系如何,有用于解决什么算法问题呢? Bell数是以Bell这个人命名的,组 ...

  9. Stirling数入门

    第一类Stirling数 定义 $$\begin{aligned}(x)_n & =x(x-1)...(x-n+1)\\&= s(n, 0) + s(n,1)x +..+s(n,n)x ...

随机推荐

  1. 2017-2018-1 20155205 嵌入式C语言——时钟

    2017-2018-1 20155205 嵌入式C语言--时钟 题目要求 基础知识 插入位(以分钟为例) 提取位(以分钟为例) 在提取分钟时,运用到了位运算,位运算有以下规律: &0 --&g ...

  2. day_1 Python介绍及计算机组成和系统

    python学习路线 基础语法 - 文件操作 - 函数 - 模块 - 面向对象(类) - 网络编程 - 数据库 - 前段 - 项目 学习方法 wwwh: what-why-where-how #wha ...

  3. kaldi的TIMIT实例二

    ============================================================================ MonoPhone Training & ...

  4. java后端导入excel模板和导入excel文件去读数据

    模板转载地址:https://www.cnblogs.com/zhangyangtao/p/9802948.html 直接上代码(我是基于ssm写的demo,导入文件目前只能读取.xls后缀的exce ...

  5. c++中的.hpp文件

    http://blog.chinaunix.net/uid-24118190-id-75239.html hpp,其实质就是将.cpp的实现代码混入.h头文件当中,定义与实现都包含在同一文件,则该类的 ...

  6. 程序性能调优工具之gprob

    1 简介改进应用程序的性能是一项非常耗时耗力的工作,但是究竟程序中是哪些函数消耗掉了大部分执行时间,这通常都不是非常明显的.GNU 编译器工具包所提供了一种剖析工具 GNU profiler(gpro ...

  7. Testing - 软件测试知识梳理 - 测试用例

    测试用例 是指对一项特定的软件产品进行测试任务的描述,体现测试方案.方法.技术和策略. 内容包括测试目标.测试环境.输入数据.测试步骤.预期结果.测试脚本等,并形成文档. 每个具体测试用例都将包括下列 ...

  8. Strom

    storm    实时分析概念        离线分析             通常是 需要一段时间的数据积累 积累到一定数量数据后 开始离线分析 无论数据量多大 离线分析 有开始 也有结束 最终得到 ...

  9. Tomcat使用IDEA远程Debug调试

    Tomcat运行环境:CentOS6.5.Tomcat7.0.IDEA 远程Tomcat设置 1.在tomcat/bin下的catalina.sh上边添加下边的一段设置 CATALINA_OPTS=& ...

  10. 服务端如何安全获取客户端请求IP地址

    服务端如何获取客户端请求IP地址,网上代码一搜一大把.其中比较常见有x-forwarded-for.client-ip等请求头,及remote_addr参数,那么为什么会存在这么多获取方式,以及到底怎 ...