[USACO18JAN]Stamp Painting
Description:
Bessie想拿\(M\) 种颜色的长为\(K\) 的图章涂一个长为\(N\) 的迷之画布。假设他选择涂一段区间,则这段区间长度必须为\(K\) ,且涂完后该区间颜色全变成图章颜色。他可以随便涂,但是最后必须把画布画满。问能有多少种最终状态,\(N\leq 10^6,M\leq 10^6,K\leq 10^6\)
Solution:
好题
告诉我了思维僵化是多么可怕
想了各种排列组合
最后看到正解直接傻逼
正着做非常不可做
考虑补集转化,求任意一段相同颜色长度都小于k的方案,再拿总方案减去即可
那个dp还是有点东西
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define ls p<<1
#define rs p<<1|1
using namespace std;
typedef long long ll;
const int mxn=1e6+5,mod=1e9+7;
int n,m,k,ans,f[mxn],s[mxn];
inline int read() {
char c=getchar(); int x=0,f=1;
while(c>'9'||c<'0') {if(c=='-') f=-1;c=getchar();}
while(c<='9'&&c>='0') {x=(x<<3)+(x<<1)+(c&15);c=getchar();}
return x*f;
}
inline void chkmax(int &x,int y) {if(x<y) x=y;}
inline void chkmin(int &x,int y) {if(x>y) x=y;}
int qpow(int a,int b) {
int res=1,base=a;
while(b) {
if(b&1) res=1ll*res*base%mod;
base=1ll*base*base%mod;
b>>=1;
}
return res;
}
int main()
{
n=read();m=read();k=read(); int ans=qpow(m,n);
f[0]=1,s[0]=1;
for(int i=1;i<=n;++i) {
if(i<k) f[i]=1ll*f[i-1]*m%mod;
else f[i]=1ll*(s[i-1]-s[i-k]+mod)%mod*(m-1)%mod;
s[i]=(s[i-1]+f[i])%mod;
}
printf("%d\n",(ans-f[n]+mod)%mod);
return 0;
}
[USACO18JAN]Stamp Painting的更多相关文章
- luogu4187 [USACO18JAN]Stamp Painting (dp)
可以发现,只要存在连续k个相同的,这个情况就一定是合法情况 然而这个不太好算,我们算不存在k个相同的,然后用$m^n$把它减掉 设f[i]为前i个,没有连续k个的 显然$f[i]=m^i ,i< ...
- 2018.10.25 洛谷P4187 [USACO18JAN]Stamp Painting(计数dp)
传送门 其实本来想做组合数学的2333. 谁知道是道dpdpdp. 唉只能顺手做了 还是用真难则反的思想. 这题我们倒着考虑,只需要求出不合法方案数就行了. 这个显然是随便dpdpdp的. f[i]f ...
- BZOJ5190 Usaco2018 Jan Stamp Painting(动态规划)
可以大胆猜想的一点是,只要有不少于一个长度为k的颜色相同子串,方案就是合法的. 直接算有点麻烦,考虑减去不合法的方案. 一个正(xue)常(sha)的思路是枚举序列被分成的段数,问题变为用一些1~k- ...
- luogu4187
P4187 [USACO18JAN]Stamp Painting 样例 input3 2 2output6 input6 10 5output190 sol:首先可以发现,对于合法的序列,只要有一串至 ...
- CF448C Painting Fence (分治递归)
Codeforces Round #256 (Div. 2) C C. Painting Fence time limit per test 1 second memory limit per tes ...
- [译]使用Continuous painting mode来分析页面的绘制状态
Chrome Canary(Chrome “金丝雀版本”)目前已经支持Continuous painting mode,用于分析页面性能.这篇文章将会介绍怎么才能页面在绘制过程中找到问题和怎么利用这个 ...
- Codeforces Round #353 (Div. 2)Restoring Painting
Vasya works as a watchman in the gallery. Unfortunately, one of the most expensive paintings was sto ...
- [BTS] Faulting application name: BTSNTSvc.exe, version: 3.9.469.0, time stamp: 0x4c547e09
Log Name: ApplicationSource: Application ErrorDate: 8/22/2013 1:28:35 AMEvent ID: 1000Task Category: ...
- hdu-4810 Wall Painting(组合数学)
题目链接: Wall Painting Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
随机推荐
- java反射机制实例
1.通过数据库字段反射给对象实例赋值 convertClass.java /** * 通过反射构造对象 * @param obj * @param rs * @return */ public Obj ...
- Android取得系统时间
Time t = new Time();//实例化Time类 t.setToNow();//取得当前的系统时间 int month = t.month;//获取月 int year = t.year; ...
- 在 Python 中使用 JSON
在 Python 中使用 JSON 本教程将会教我们如何使用 Python 编程语言编码和解码 JSON.让我们先来准备环境以便针对 JSON 进行 Python 编程. 环境 在我们使用 Pytho ...
- python 把类当作 装饰器
# class Test(object): # def __call__(self): # print('-----test----') # t= Test()# t() 调用主要有个__call__ ...
- windows环境下永久修改pip镜像源的方法(转)
一.在windows环境下修改pip镜像源的方法(以python3.7为例) (1):在windows文件管理器中,输入 %APPDATA%,cmd里面输入即可. (2):会定位到一个新的目录下,在该 ...
- 【APUE | 03】文件I/O
博客链接: inux中的文件描述符与打开文件之间的关系 #include <stdio.h> #include <unistd.h> #include <sys/stat ...
- Scala学习教程笔记一之基础语法,条件控制,循环控制,函数,数组,集合
前言:Scala的安装教程:http://www.cnblogs.com/biehongli/p/8065679.html 1:Scala之基础语法学习笔记: :声明val变量:可以使用val来声明变 ...
- 学习笔记: 反射应用、原理,完成扩展,emit动态代码
using Ruanmou.DB.Interface; using Ruanmou.DB.MySql; using Ruanmou.DB.SqlServer; using Ruanmou.Model; ...
- NEST 之旅 · 开启
NEST 之旅 · 开启 Version:5.x 英文原文地址:Getting started 说实话,这篇文章翻译的很糟糕.但是我的能力有限,目前只有这个水平,还望各位多指导. NEST 是 Ela ...
- Python_生成器generator
生成器:调用时返回一个迭代器 如果一个函数中包含yield语法,那这个函数就会变成一个生成器 例1: def draw_money(draw): #这个函数称为生成器 while draw >0 ...