BZOJ

洛谷


\(Description\)

给定一张部分边方向已确定的竞赛图。你需要给剩下的边确定方向,使得图中的三元环数量最多。

\(n\leq100\)。


\(Solution\)

这种选择之间有影响,而且\(n\)很小的题考虑网络流啊。

最理想的情况能得到的三元环个数是\(C_n^3\)个。我们考虑怎样会使三元环个数减少。

如果三个点之间不成三元环,那么一定是某个点入度为\(2\),某个点出度为\(2\),另一个点入度出度都为\(1\)。

不妨只考虑入度。如果一个点入度为\(2\),那么会减少\(1\)个三元环;如果入度为\(3\),那么会减少\(C_3^2=3\)个三元环(设连向该点\(A\)的三个点为\(B,C,D\),\(A,B,C\)、\(A,B,D\)、\(A,C,D\)之间都形不成三元环)...

也就是设一个点的入度为\(dgr\),会减少\(C_{dgr}^2\)个三元环。那么答案就是\(C_n^3-\sum_{i=1}^nC_{dgr_i}^2\)。

而度数每次改变\(1\),减少的三元环个数是\(C_{dgr}^2-C_{dgr-1}^2=dgr-1\)。

然后就可以考虑给每个点分配度数了。对每条边新建一个点\(x\),由源点向\(x\)连容量\(1\)、费用\(0\)的边,\(x\)向边的两端点分别连容量为\(1\)、费用为\(0\)的边。

对于原图的\(n\)个点,每个点向汇点分别连容量为\(1\),费用为\(0,1,2,3...\)的边。

跑费用流,\(C_n^3-cost\)就是答案了。

实现上,对于确定的边并不需要建出来,把答案先减掉\(\frac{dgr_i(dgr_i-1)}{2}\);然后枚举\(i\)连向汇点的边时,费用从\(dgr_i\)开始枚举就可以了。(优化很明显)

数组memset(A,...,某个确定大小),注意A[]int还是boolbool是一字节!

另外有种随机化+迭代的做法,跑得很快:


SPFA:(日常被zkw吊打)

//3032kb	3700ms
#include <queue>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 300000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=105+105*52,M=4*105*105*2; int src,des,Enum,H[N],nxt[M],fr[M],to[M],cap[M],cost[M],pre[N];
char IN[MAXIN],*SS=IN,*TT=IN; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now;
}
inline void AE(int u,int v,int w,int c)
{
to[++Enum]=v, fr[Enum]=u, nxt[Enum]=H[u], H[u]=Enum, cap[Enum]=w, cost[Enum]=c;
to[++Enum]=u, fr[Enum]=v, nxt[Enum]=H[v], H[v]=Enum, cap[Enum]=0, cost[Enum]=-c;
}
bool SPFA()
{
static int dis[N];
static bool inq[N];
static std::queue<int> q;
memset(dis,0x3f,des+1<<2);
dis[0]=0, q.push(0);
while(!q.empty())
{
int x=q.front(); q.pop();
inq[x]=0;
for(int i=H[x],v; i; i=nxt[i])
if(cap[i] && dis[v=to[i]]>dis[x]+cost[i])
dis[v]=dis[x]+cost[i], pre[v]=i, !inq[v]&&(q.push(v),inq[v]=1);
}
return dis[des]<0x3f3f3f3f;
}
inline int Augment()
{
int res=0;
for(int i=des; i; i=fr[pre[i]])
res+=cost[pre[i]], --cap[pre[i]], ++cap[pre[i]^1];
return res;
}
int MCMF()
{
int res=0;
while(SPFA()) res+=Augment();
return res;
} int main()
{
static int dgr[105],id[N],tag[N],Ans[105][105];
const int n=read(); Enum=1, src=0, des=(n*n+n)/2+1;
if(n<3) return putchar('0'),0;
for(int i=1,tot=n; i<=n; ++i)
{
for(int j=1; j<=i; ++j) read();
for(int j=i+1; j<=n; ++j)
switch(AE(0,++tot,1,0),read())
{
case 0: tag[tot]=1, ++dgr[j]; break;
case 1: tag[tot]=2, ++dgr[i]; break;
case 2: AE(tot,i,1,0), id[tot]=Enum, AE(tot,j,1,0); break;//->i: i wins
}
}
int ans=n*(n-1)*(n-2)/6;
for(int i=1; i<=n; ++i)
{
ans-=dgr[i]*(dgr[i]-1)/2;
for(int j=dgr[i]; j<n-1; ++j) AE(i,des,1,j);
}
printf("%d\n",ans-MCMF());
for(int i=1,tot=n; i<=n; ++i)
for(int j=i+1; j<=n; ++j)
if(tag[++tot]) Ans[i][j]=tag[tot]-1;
else Ans[i][j]=cap[id[tot]]?1:0;
for(int i=1; i<=n; ++i,putchar('\n'))
{
for(int j=1; j<i; ++j) printf("%d ",Ans[j][i]^1);
for(int j=i; j<=n; ++j) printf("%d ",Ans[i][j]);
} return 0;
}

zkw:

//2292kb	416ms
#include <queue>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 300000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=105+105*52,M=4*105*105*2; int src,des,Cost,Enum,cur[N],H[N],nxt[M],fr[M],to[M],cap[M],cost[M],dis[N];
bool vis[N];
char IN[MAXIN],*SS=IN,*TT=IN; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now;
}
inline void AE(int u,int v,int w,int c)
{
to[++Enum]=v, fr[Enum]=u, nxt[Enum]=H[u], H[u]=Enum, cap[Enum]=w, cost[Enum]=c;
to[++Enum]=u, fr[Enum]=v, nxt[Enum]=H[v], H[v]=Enum, cap[Enum]=0, cost[Enum]=-c;
}
bool SPFA()
{
static bool inq[N];
static std::queue<int> q;
memset(dis,0x3f,des+1<<2);
dis[0]=0, q.push(0);
while(!q.empty())
{
int x=q.front(); q.pop();
inq[x]=0;
for(int i=H[x],v; i; i=nxt[i])
if(cap[i] && dis[v=to[i]]>dis[x]+cost[i])
dis[v]=dis[x]+cost[i], !inq[v]&&(q.push(v),inq[v]=1);
}
return dis[des]<0x3f3f3f3f;
}
int DFS(int x)
{
if(x==des) return 1;
vis[x]=1;
for(int &i=cur[x]; i; i=nxt[i])
if(!vis[to[i]] && cap[i] && dis[to[i]]==dis[x]+cost[i] && DFS(to[i]))
return --cap[i],++cap[i^1],Cost+=cost[i],1;
return 0;
}
int MCMF()
{
while(SPFA())
{
memcpy(cur,H,des+1<<2), memset(vis,0,des+1);//bool是1字节!!!
while(DFS(0));
}
return Cost;
} int main()
{
static int dgr[105],id[N],tag[N],Ans[105][105];
const int n=read(); Enum=1, src=0, des=(n*n+n)/2+1;
if(n<3) return putchar('0'),0;
for(int i=1,tot=n; i<=n; ++i)
{
for(int j=1; j<=i; ++j) read();
for(int j=i+1; j<=n; ++j)
switch(AE(0,++tot,1,0),read())
{
case 0: tag[tot]=1, ++dgr[j]; break;
case 1: tag[tot]=2, ++dgr[i]; break;
case 2: AE(tot,i,1,0), id[tot]=Enum, AE(tot,j,1,0); break;//->i: i wins
}
}
int ans=n*(n-1)*(n-2)/6;
for(int i=1; i<=n; ++i)
{
ans-=dgr[i]*(dgr[i]-1)/2;
for(int j=dgr[i]; j<n-1; ++j) AE(i,des,1,j);
}
printf("%d\n",ans-MCMF());
for(int i=1,tot=n; i<=n; ++i)
for(int j=i+1; j<=n; ++j)
if(tag[++tot]) Ans[i][j]=tag[tot]-1;
else Ans[i][j]=cap[id[tot]]?1:0;
for(int i=1; i<=n; ++i,putchar('\n'))
{
for(int j=1; j<i; ++j) printf("%d ",Ans[j][i]^1);
for(int j=i; j<=n; ++j) printf("%d ",Ans[i][j]);
} return 0;
}

BZOJ.2597.[WC2007]剪刀石头布(费用流zkw)的更多相关文章

  1. BZOJ 2597: [Wc2007]剪刀石头布(费用流)

    传送门 解题思路 考虑全集-不能构成三元环的个数.如果三个点不能构成三元环,一定有一个点的入度为\(2\),继续扩展,如果一个点的度数为\(3\),则会失去3个三元环.对于一个点来说,它所产生的不能构 ...

  2. bzoj 2597 [Wc2007]剪刀石头布——费用流

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2597 三个人之间的关系,除了“剪刀石头布”,就是有一个人赢了2局:所以考虑算补集,则每个人对 ...

  3. bzoj 2597: [Wc2007]剪刀石头布【最小费用最大流】

    脑子不太清楚一个zz问题调了好久-- 首先正难则反,因为三元环好像没什么特点,就考虑让非三元环个数最小 考虑非三元环特点,就是环上一定有一个点的入度为2,联系整张图,三元环个数就是每个点C(入度,2) ...

  4. [WC2007]剪刀石头布——费用流

    比较有思维含量的一道题 题意:给混合完全图定向(定向为竞赛图)使得有最多的三元环 三元环条件要求比较高,还不容易分开处理. 正难则反 考虑,什么情况下,三元组不是三元环 一定是一个点有2个入度,一个点 ...

  5. 2597: [Wc2007]剪刀石头布

    2597: [Wc2007]剪刀石头布 链接 分析: 费用流. 首先转化一下问题,整张图最优的情况是存在$C_n^3$个,即任意3个都行,然后考虑去掉最少不满足的三元环. 如果u赢了v,u向v连一条边 ...

  6. [模板] 网络流相关/最大流ISAP/费用流zkw

    最大流/ISAP 话说ISAP是真快...(大多数情况)吊打dinic,而且还好写... 大概思路就是: 在dinic的基础上, 动态修改层数, 如果终点层数 \(>\) 点数, break. ...

  7. [bzoj 1449] 球队收益(费用流)

    [bzoj 1449] 球队收益(费用流) Description Input Output 一个整数表示联盟里所有球队收益之和的最小值. Sample Input 3 3 1 0 2 1 1 1 1 ...

  8. BZOJ.5120.[清华集训2017]无限之环(费用流zkw 黑白染色)

    题目链接 LOJ 洛谷 容易想到最小费用最大流分配度数. 因为水管形态固定,每个点还是要拆成4个点,分别当前格子表示向上右下左方向. 然后能比较容易地得到每种状态向其它状态转移的费用(比如原向上的可以 ...

  9. CSU 1948: 超级管理员(普通费用流&&zkw费用流)

    Description 长者对小明施加了膜法,使得小明每天起床就像马丁的早晨一样. 今天小明早上醒来发现自己成了一位仓管员.仓库可以被描述为一个n × m的网格,在每个网格上有几个箱子(可能没有).为 ...

随机推荐

  1. JavaScript实现的抛物线运动效果

    css88 技术文档地址: http://www.css88.com/archives/5355 张鑫旭 技术文档地址: https://www.zhangxinxu.com 使用示例: 使用时直接引 ...

  2. Linux文件系统及文件类型

    Linux文件系统: 根文件系统(rootfs) root filesystem LSB, FHS: (FileSystem... /etc,  /usr,  /var,  /root.... /bo ...

  3. .tar.xz文件的解压方法

    废话不多说: 直接看 方法一: tar -xvJf ***.tar.gz 方法二: 先减压成 .tar 格式的文件, 再解压 .tar #xz是一个工具, 系统中没有安装,需要下载 xz -d *** ...

  4. AI-DRF权限、频率

    权限 权限逻辑 权限逻辑 权限组件可以设置在三个地方:写在每个类下边表示,访问这个类的数据时,没有权限就不能访问:写在全局,表示访问每个字段的数据都需要权限:还有默认已经也写好了. 写在每个类中:写一 ...

  5. springcloud Eureka控制台参数说明

    Home进入Eureka控制台首页,首先看HOME页的头部 System Status Environment : 环境,默认为test, 该参数在实际使用过程中,可以不用更改 Data center ...

  6. spring cloud 创建一个简单Eureka Server

    在Spring Cloud实现一个Eureka Server是一件非常简单的事情.下面我们来写一个Eureka Server DEMO. 编码 父项目pom.xml <?xml version= ...

  7. 出现xml错误的时候都是配置文件的名字没有改造成的

    The error may exist in com/bjpowernode/dao/PlayerDao.xml

  8. PHP中self和this的用法区别

    PHP支持类和面向对象结构,PHP的类的静态函数和变量不与任何特定类的实例相关联(换句话说,一个对象).请看:类与对象的区别. 相反,静态函数和变量与类定义本身相关联.换言之,一个类的所有实例都共享相 ...

  9. 虚拟机设置静态IP与配置网络

    不废话,直接上图 一:先配置虚拟机的网络 二:配置win10-VM8网络 三:查看以太网的ip信息,直接在管理员命令中输入 ipconfig /all可以到连接信息 四:如果在上面找不到VM8的网络信 ...

  10. ubuntud安装Adobe Flash Player / Plugin

    1.https://get.adobe.com/flashplayer/ , select tar.gz for other Linux, download 2.Unpack the tar.gz f ...