设$n$为正整数,$a_1,a_2,\cdots,a_n;b_1,b_2,\cdots,b_n;A,B$都是正数,
满足$a_i\le b_i,a_i\le A,i=1,2,\cdots,n$ 且$\prod\limits_{i=1}^n{\dfrac{b_i}{a_i}}\le\dfrac{B}{A}$.
证明:$\prod\limits_{i=1}^n{\dfrac{b_i+1}{a_i+1}}\le\dfrac{B+1}{A+1}$(2018全国联赛加试题第一题)


记$\dfrac{b_i}{a_i}=1+x_i,x_i\ge0,(i=1,2,\cdots)$
记$f_k=\sum\limits_{1\le i_1<i_2\cdots<i_k\le n}{x_{i_1}x_{i_2}\cdots x_{i_k}}\ge0$
则$\prod\limits_{i=1}^{n}\dfrac{1+b_i}{1+a_i}=\prod\limits_{i=1}^n{\dfrac{1+a_i(1+x_i)}{1+a_i}}\le \prod\limits_{i=1}^{n}\dfrac{1+A(1+x_i)}{1+A}=\prod\limits_{i=1}^{n}\left(1+\dfrac{A}{1+A}x_i\right)$
$\overset{\textbf{此处用到韦达定理}}{=}1+\dfrac{A}{1+A}f_1+\left(\dfrac{A}{1+A}\right)^2f_2+\cdots+\left(\dfrac{A}{1+A}\right)^nf_n$
$\overset{\textbf{变形}}{=}\dfrac{1+A(1+f_1+f_2+\cdots+f_n)}{1+A}+\dfrac{A}{1+A}\sum\limits_{k=1}^n\left((\dfrac{A}{1+A})^{k-1}-1)f_k\right)$
$\overset{\textbf{此处用到韦达定理}}{=}\dfrac{1+A\prod\limits_{k=1}^n(1+x_i)}{1+A}+\dfrac{A}{1+A}\sum\limits_{k=1}^n\left((\dfrac{A}{1+A})^{k-1}-1)f_k\right)$
$\le\dfrac{1+A\prod\limits_{k=1}^n(1+x_i)}{1+A}\le\dfrac{1+B}{1+A}$

MT【216】韦达定理的更多相关文章

  1. 11月26号host

    127.0.0.1 localhost255.255.255.255 broadcasthost::1 localhostfe80::1%lo0 localhost # Google start216 ...

  2. MT【217】韦达定理应用

    若2018次方程$x^{2018}-4036x^{2017}+a_{2016}x^{2016}+\cdots+a_1x+a_0=0$ 有2018个正实数, 则对于所有可能的方程$\sum\limits ...

  3. Android Studio Error:CreateProcess error=216

    Error:CreateProcess error=216, This version of %1 is not compatible with the version of Windows you' ...

  4. 多点触摸(MT)协议(翻译)

    参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...

  5. /MT、/MD编译选项,以及可能引起在不同堆中申请、释放内存的问题

    一.MD(d).MT(d)编译选项的区别 1.编译选项的位置 以VS2005为例,这样子打开: 1)         打开项目的Property Pages对话框 2)         点击左侧C/C ...

  6. MT写的对URL操作的两个方法

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. MD(d)、MT(d)编译选项的区别

    1.编译选项的位置 以VS2005为例,这样子打开: 1)         打开项目的Property Pages对话框 2)         点击左侧C/C++节 3)         点击Code ...

  8. DCMTK3.6.0 (MT支持库)安装 完整说明

    环境WIN7 + VisualStudio2010 + dcmtk3.6.0 + Cmake2.8.6 准备工作: 从dcmtk官方网站下载源代码及支持库文件.分别名为:dcmtk-3.6.0 dcm ...

  9. visual studio运行时库MT、MTd、MD、MDd的研究(转载)

    转载:http://blog.csdn.net/ybxuwei/article/details/9095067 转载:http://blog.sina.com.cn/s/blog_624485f701 ...

随机推荐

  1. 练习ng-show和ng-hide的方法

    在程序设计过程,我们需要把某一元素或是或一块进行显示与隐藏. 如你正使用angularjs的话,就可以使用ng-show或者ng-hide来进行控制. var showhideApp = angula ...

  2. SpringMVC之单/多文件上传

    1.准备jar包(图标所指必备包,其他按情况导入) 2.项目结构 3.SingleController.java(控制器代码单文件和多文件) package com.wt.uplaod; import ...

  3. Luogu P1129 [ZJOI2007]矩阵游戏

    题目意思还是比较直观的,而且这个建模的套路也很明显. 我们首先考虑从主对角线可以转移到哪些状态. 由于每一次操作都不会把同一行(列)的黑色方块分开.因此我们发现: 只要找出\(n\)个黑色棋子,让它们 ...

  4. ML.NET 示例:多类分类之问题分类

    写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...

  5. 【工作感悟】Android 开发者,如何提升自己的职场竞争力?

    前言 该文章是笔者参加 Android 巴士线下交流会成都站 的手写讲稿虚拟场景,所以大家将就看一下. 开始 大家好,我是刘世麟,首先感谢安卓巴士为我们创造了这次奇妙的相遇.现场的氛围也让我十分激动. ...

  6. c#基础系列3---深入理解ref 和out

    "大菜":源于自己刚踏入猿途混沌时起,自我感觉不是一般的菜,因而得名"大菜",于自身共勉. 扩展阅读 c#基础系列1---深入理解 值类型和引用类型 c#基础系 ...

  7. Nginx+keepalived 双机热备(主主模式)

    之前已经介绍了Nginx+Keepalived双机热备的主从模式,今天在此基础上说下主主模式的配置. 由之前的配置信息可知:master机器(master-node):103.110.98.14/19 ...

  8. 浅谈JS的作用域链(三)

    前面两篇文章介绍了JavaScript执行上下文中两个重要属性:VO/AO和scope chain.本文就来看看执行上下文中的this. 首先看看下面两个对this的概括: this是执行上下文(Ex ...

  9. Android 學習之旅!(2)

    早幾天因爲學車,弄了幾天時間和精力過去,今天終於考過了(科目二,還是補考的...)嗯..不管這麼多了..今天又開始我的android 學習之旅!! 筆記: platform-tools目錄下的文件: ...

  10. 关于RESTful 的概念

    1.REST 是面向资源的,这个概念非常重要,而资源是通过 URI 进行暴露.URI 的设计只要负责把资源通过合理方式暴露出来就可以了.对资源的操作与它无关,操作是通过 HTTP动词来体现,所以RES ...