设$n$为正整数,$a_1,a_2,\cdots,a_n;b_1,b_2,\cdots,b_n;A,B$都是正数,
满足$a_i\le b_i,a_i\le A,i=1,2,\cdots,n$ 且$\prod\limits_{i=1}^n{\dfrac{b_i}{a_i}}\le\dfrac{B}{A}$.
证明:$\prod\limits_{i=1}^n{\dfrac{b_i+1}{a_i+1}}\le\dfrac{B+1}{A+1}$(2018全国联赛加试题第一题)


记$\dfrac{b_i}{a_i}=1+x_i,x_i\ge0,(i=1,2,\cdots)$
记$f_k=\sum\limits_{1\le i_1<i_2\cdots<i_k\le n}{x_{i_1}x_{i_2}\cdots x_{i_k}}\ge0$
则$\prod\limits_{i=1}^{n}\dfrac{1+b_i}{1+a_i}=\prod\limits_{i=1}^n{\dfrac{1+a_i(1+x_i)}{1+a_i}}\le \prod\limits_{i=1}^{n}\dfrac{1+A(1+x_i)}{1+A}=\prod\limits_{i=1}^{n}\left(1+\dfrac{A}{1+A}x_i\right)$
$\overset{\textbf{此处用到韦达定理}}{=}1+\dfrac{A}{1+A}f_1+\left(\dfrac{A}{1+A}\right)^2f_2+\cdots+\left(\dfrac{A}{1+A}\right)^nf_n$
$\overset{\textbf{变形}}{=}\dfrac{1+A(1+f_1+f_2+\cdots+f_n)}{1+A}+\dfrac{A}{1+A}\sum\limits_{k=1}^n\left((\dfrac{A}{1+A})^{k-1}-1)f_k\right)$
$\overset{\textbf{此处用到韦达定理}}{=}\dfrac{1+A\prod\limits_{k=1}^n(1+x_i)}{1+A}+\dfrac{A}{1+A}\sum\limits_{k=1}^n\left((\dfrac{A}{1+A})^{k-1}-1)f_k\right)$
$\le\dfrac{1+A\prod\limits_{k=1}^n(1+x_i)}{1+A}\le\dfrac{1+B}{1+A}$

MT【216】韦达定理的更多相关文章

  1. 11月26号host

    127.0.0.1 localhost255.255.255.255 broadcasthost::1 localhostfe80::1%lo0 localhost # Google start216 ...

  2. MT【217】韦达定理应用

    若2018次方程$x^{2018}-4036x^{2017}+a_{2016}x^{2016}+\cdots+a_1x+a_0=0$ 有2018个正实数, 则对于所有可能的方程$\sum\limits ...

  3. Android Studio Error:CreateProcess error=216

    Error:CreateProcess error=216, This version of %1 is not compatible with the version of Windows you' ...

  4. 多点触摸(MT)协议(翻译)

    参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...

  5. /MT、/MD编译选项,以及可能引起在不同堆中申请、释放内存的问题

    一.MD(d).MT(d)编译选项的区别 1.编译选项的位置 以VS2005为例,这样子打开: 1)         打开项目的Property Pages对话框 2)         点击左侧C/C ...

  6. MT写的对URL操作的两个方法

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. MD(d)、MT(d)编译选项的区别

    1.编译选项的位置 以VS2005为例,这样子打开: 1)         打开项目的Property Pages对话框 2)         点击左侧C/C++节 3)         点击Code ...

  8. DCMTK3.6.0 (MT支持库)安装 完整说明

    环境WIN7 + VisualStudio2010 + dcmtk3.6.0 + Cmake2.8.6 准备工作: 从dcmtk官方网站下载源代码及支持库文件.分别名为:dcmtk-3.6.0 dcm ...

  9. visual studio运行时库MT、MTd、MD、MDd的研究(转载)

    转载:http://blog.csdn.net/ybxuwei/article/details/9095067 转载:http://blog.sina.com.cn/s/blog_624485f701 ...

随机推荐

  1. CF487E Tourists 圆方树、树链剖分

    传送门 注意到我们需要求的是两点之间所有简单路径中最小值的最小值,那么对于一个点双联通分量来说,如果要经过它,则一定会经过这个点双联通分量里权值最小的点 注意:这里不能缩边双联通分量,样例\(2\)就 ...

  2. Nginx Windows版的服务安装和管理工具

    以前研究过负载均衡,最近正在项目上实施(从来没做过小项目以上级别的东西,哈),nginx挺好,不过Windows有点为难,小流量和本地不追求性能,简单易用是目标. Nginx Windows上并没有提 ...

  3. 【nodejs】让nodejs像后端mvc框架(asp.net mvc)一样处理请求--参数自动映射篇(6/8)

    文章目录 前情概要 路由.action的扫描.发现.注册搞定之后,后来我发现在我们的action里面获取参数往往都是通过request对象来一个一个获取.同样的一行代码我们不厌其烦的重复写了无数次.遂 ...

  4. 忘记mysql数据库root密码

    找到配置文件my.ini  ,然后将其打开,可以选择用记事本打开,查找的方法如下: 打开后,搜索mysqld关键字 找到后,在mysqld下面添加skip-grant-tables,保存退出. PS: ...

  5. Jenkins构建自动化任务

    前言 Jenkins是一个开源软件项目,是基于Java开发的一种持续集成工具,用于监控持续重复的工作,旨在提供一个开放易用的软件平台,使软件的持续集成变成可能. 一.环境配置 1.切换到jenkins ...

  6. visual studio 2013的使用和单元测试

    Visual Studio 2013 是一个先进的开发解决方案,各种规模的团队通过它均可设计和创建引人注目的应用程序.Visual Studio 13在新功能包括C#和VB编译器和IDE支持完全基于. ...

  7. 2017-2018-2 1723《程序设计与数据结构》实验四 & 实验五 & 课程总结 总结

    作业地址 实验四作业:https://edu.cnblogs.com/campus/besti/CS-IMIS-1723/homework/1943 提交情况如图: 实验五作业:https://edu ...

  8. Java 类的加载

    package com.cwcec.p2; class C { public static final int SIZE; static { SIZE = 100; System.out.printl ...

  9. 『编程题全队』Beta 阶段冲刺博客三

    1.提供当天站立式会议照片一张 2.每个人的工作 (有work item 的ID) (1) 昨天已完成的工作 孙志威: 1.添加登录框的功能 2.修改登录框的UI 孙慧君: 1.提醒显示UI设计: 2 ...

  10. PAT 1056 组合数的和

    https://pintia.cn/problem-sets/994805260223102976/problems/994805271455449088 给定 N 个非 0 的个位数字,用其中任意 ...