题目链接:

https://cn.vjudge.net/problem/POJ-1860

Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency.
For example, if you want to exchange 100 US Dollars into
Russian Rubles at the exchange point, where the exchange rate is 29.75,
and the commission is 0.39 you will get (100 - 0.39) * 29.75 =
2963.3975RUR.

You surely know that there are N different currencies you can
deal with in our city. Let us assign unique integer number from 1 to N
to each currency. Then each exchange point can be described with 6
numbers: integer A and B - numbers of currencies it exchanges, and real R
AB, C
AB, R
BA and C
BA - exchange rates and commissions when exchanging A to B and B to A respectively.

Nick has some money in currency S and wonders if he can
somehow, after some exchange operations, increase his capital. Of
course, he wants to have his money in currency S in the end. Help him to
answer this difficult question. Nick must always have non-negative sum
of money while making his operations.

Input

The first line of the input contains four numbers: N - the number
of currencies, M - the number of exchange points, S - the number of
currency Nick has and V - the quantity of currency units he has. The
following M lines contain 6 numbers each - the description of the
corresponding exchange point - in specified above order. Numbers are
separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100,
V is real number, 0<=V<=10
3.

For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10
-2<=rate<=10
2, 0<=commission<=10
2.

Let us call some sequence of the exchange operations simple
if no exchange point is used more than once in this sequence. You may
assume that ratio of the numeric values of the sums at the end and at
the beginning of any simple sequence of the exchange operations will be
less than 10
4.

Output

If Nick can increase his wealth, output YES, in other case output NO to the output file.

Sample Input

3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00

Sample Output

YES
 /*
题意描述
输入货币的种数n,货币兑换点数m,某人有货币种类s,价值hm
m个兑换点的规则分别是a兑换b,汇率是rab,费用是cab,b兑换a,汇率是rba,费用是cba,计算规则是(va-cab)*rab
问能否通过这m个兑换点使他的拥有s这种货币的钱数增加 解题思路
不管怎么兑换,关键是最后还要换回s这种钱,那么必须至少存在一个环,使得最后还能换回s,但是又要求增加钱数,那么这个换必须是正
环。所以问题变成了如何判断图中存在正环。使用Bellman_Ford算法判断正环即可。 样例中第二条边是1.10 不是1.00,看样例看了半天没看懂
注意函数调用时数据类型的变换,包括输入和函数传递参数时的数据类型
*/
#include<cstdio>
#include<cstring>
const int maxn = ; int u[maxn], v[maxn];
double ruv[maxn], cuv[maxn], dis[maxn];
int n, m, en;//边数
bool Bellman_Ford(int s, double hm); int main()
{
int a, b, s;
double hm, rab, cab, rba, cba;
while(scanf("%d%d%d%lf", &n, &m, &s, &hm) != EOF) {
en = ;
for(int i = ; i <= m; i++) {
scanf("%d%d%lf%lf%lf%lf", &a, &b, &rab, &cab, &rba, &cba);
u[en] = a; v[en] = b;
ruv[en] = rab;
cuv[en++] = cab; u[en] = b; v[en] = a;
ruv[en] = rba;
cuv[en++] = cba;
} if(Bellman_Ford(s, hm))
puts("YES");
else
puts("NO");
}
return ;
} bool Bellman_Ford(int s, double hm) {
memset(dis, , sizeof(dis));
dis[s] = hm; for(int i = ; i <= n; i++) {
for(int j = ; j < en; j++) {
if(dis[v[j]] < (dis[u[j]] - cuv[j]) * ruv[j]) {
dis[v[j]] = (dis[u[j]] - cuv[j]) * ruv[j];
if(i == n)
return ;//存在正环
}
}
}
return ;
}

使用结构体封装一下Bellman-Ford算法,再使用队列和邻接表优化一下,代码如下:

使用的时候注意数据类型的使用和结点数全部减1。

 #include<cstdio>
#include<vector>
#include<queue>
#include<cstring>
using namespace std; const int maxn = ; struct Edge {
int from, to;
double rait, com;
Edge(int u, int v, double r, double c): from(u), to(v), rait(r), com(c) { }
}; struct Bellman_Ford {
int n, m, s;
double hm;
vector<Edge> edges;
vector<int> G[maxn];
double d[maxn];
bool inq[maxn];
int cnt[maxn]; void init(int n) {
this->n = n;
for(int i = ; i < n; i ++) {
G[i].clear();
}
edges.clear();
} void AddEdge(int from, int to, double rait, double com){
edges.push_back(Edge(from, to, rait, com));
m = edges.size();
G[from].push_back(m - );
} bool bellman_ford (int s, double hm) {
this->s = s;
this->hm = hm;
memset(d, , sizeof(d));
d[s] = hm; memset(inq, , sizeof(inq));
memset(cnt, , sizeof(cnt)); queue<int> q;
q.push(s);
inq[s] = ; while(!q.empty()) {
int u = q.front();
q.pop(); inq[u] = ;
for(int i = ; i < G[u].size(); i++) {
Edge e = edges[G[u][i]];
if(d[e.to] < (d[u] - e.com) * e.rait){
d[e.to] = (d[u] - e.com) * e.rait;
if(!inq[e.to]) {
q.push(e.to);
inq[e.to] = ; cnt[e.to]++;
if(cnt[e.to] > n)
return ;
}
}
}
}
return ;
}
}; struct Bellman_Ford solve;
int main()
{
int s, a, b, n, m;
double hm, rab, cab, rba, cba;
while(scanf("%d%d%d%lf", &n, &m, &s, &hm) != EOF) {
solve.init(n);
for(int i = ; i <= m; i++) {
scanf("%d%d%lf%lf%lf%lf", &a, &b, &rab, &cab, &rba, &cba);
a--;
b--;
solve.AddEdge(a, b, rab, cab);
solve.AddEdge(b, a, rba, cba);
}
int ans = solve.bellman_ford(s-,hm); if(ans)
puts("YES");
else
puts("NO");
}
return ;
}

POJ 1860 Currency Exchange(如何Bellman-Ford算法判断图中是否存在正环)的更多相关文章

  1. POJ 1860 Currency Exchange (Bellman-Ford)

    题目链接:POJ 1860 Description Several currency exchange points are working in our city. Let us suppose t ...

  2. 最短路(Bellman_Ford) POJ 1860 Currency Exchange

    题目传送门 /* 最短路(Bellman_Ford):求负环的思路,但是反过来用,即找正环 详细解释:http://blog.csdn.net/lyy289065406/article/details ...

  3. POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环)

    POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环) Description Several currency ...

  4. 图论 --- spfa + 链式向前星 : 判断是否存在正权回路 poj 1860 : Currency Exchange

    Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 19881   Accepted: 711 ...

  5. POJ 1860 Currency Exchange (最短路)

    Currency Exchange Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 60000/30000K (Java/Other) T ...

  6. POJ 1860 Currency Exchange 最短路+负环

    原题链接:http://poj.org/problem?id=1860 Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Tota ...

  7. POJ 1860 Currency Exchange + 2240 Arbitrage + 3259 Wormholes 解题报告

    三道题都是考察最短路算法的判环.其中1860和2240判断正环,3259判断负环. 难度都不大,可以使用Bellman-ford算法,或者SPFA算法.也有用弗洛伊德算法的,笔者还不会SF-_-…… ...

  8. POJ 1860——Currency Exchange——————【最短路、SPFA判正环】

    Currency Exchange Time Limit:1000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u S ...

  9. POJ 1860 Currency Exchange (bellman-ford判负环)

    Currency Exchange 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/E Description Several c ...

随机推荐

  1. 多线程安全单例模式学习代码 c++11

    // Singleton.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <mutex> #include & ...

  2. 用windows性能监视器检测sqlserver 常见指标

    转载地址:https://www.cnblogs.com/xdong/p/4296072.html

  3. 快速解决MariaDB无密码就可以登录的问题

    mysql  Ver 15.1 Distrib 10.1.37-MariaDB, for Linux (x86_64) using readline 5.1 #mysql -uroot -p #del ...

  4. [C#.net]将null值插入SQL Server的Datetime

    之前处理SQL Server可以为空时间字段总是设置时间的最小值和最大值,今天才发现也可以把null用C#的代码插入到sql内 使用可空的值类型,代码如下 public DateTime? Servi ...

  5. crontab定时时间解释

    用户所建立的crontab文件中,每一行都代表一项任务,每行的每个字段代表一项设置,它的格式共分为六个字段,前五段是时间设定段,第六段是要执行的命令段,格式如下: minute hour day mo ...

  6. 让photoshop cc 支持 webp格式

    下载WebP.8bi文件,看PS cc 是32位还是64位,找到对应的文件. brushes8.com-2017-11-03_08-29-21_654098.7z 把  WebP.8bi 复制到pho ...

  7. Python logging模块简介

    logging模块提供logger,handler,filter,formatter. logger:提供日志接口,供应用代码使用.logger最长用的操作有两类:配置和发送日志消息.可以通过logg ...

  8. 【洛谷4070】 [SDOI2016]生成魔咒(SAM)

    传送门 洛谷 Solution 考虑要求的是什么,前缀的本质不同的字符串个数? 如果只要求一个串那么显然答案是\(\sum_{i=1}^{tot}len[i]-len[fa[i]]\)(实际上这个并不 ...

  9. HTTP请求时间参数设置

    1. JSON 2019-01-18 18:36:35 2. Postman 2019/01/18 18:36:35

  10. 【leetcode】20.有效的括号

    题目 给定一个只包括 '(',')','{','}','[',']' 的字符串,判断字符串是否有效.有效字符串需满足:左括号必须用相同类型的右括号闭合.左括号必须以正确的顺序闭合.注意空字符串可被认为 ...