POJ 1860 Currency Exchange(如何Bellman-Ford算法判断图中是否存在正环)
题目链接:
https://cn.vjudge.net/problem/POJ-1860
For example, if you want to exchange 100 US Dollars into
Russian Rubles at the exchange point, where the exchange rate is 29.75,
and the commission is 0.39 you will get (100 - 0.39) * 29.75 =
2963.3975RUR.
You surely know that there are N different currencies you can
deal with in our city. Let us assign unique integer number from 1 to N
to each currency. Then each exchange point can be described with 6
numbers: integer A and B - numbers of currencies it exchanges, and real R
AB, C
AB, R
BA and C
BA - exchange rates and commissions when exchanging A to B and B to A respectively.
Nick has some money in currency S and wonders if he can
somehow, after some exchange operations, increase his capital. Of
course, he wants to have his money in currency S in the end. Help him to
answer this difficult question. Nick must always have non-negative sum
of money while making his operations.
Input
of currencies, M - the number of exchange points, S - the number of
currency Nick has and V - the quantity of currency units he has. The
following M lines contain 6 numbers each - the description of the
corresponding exchange point - in specified above order. Numbers are
separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100,
V is real number, 0<=V<=10
3.
For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10
-2<=rate<=10
2, 0<=commission<=10
2.
Let us call some sequence of the exchange operations simple
if no exchange point is used more than once in this sequence. You may
assume that ratio of the numeric values of the sums at the end and at
the beginning of any simple sequence of the exchange operations will be
less than 10
4.
Output
Sample Input
3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00
Sample Output
YES
/*
题意描述
输入货币的种数n,货币兑换点数m,某人有货币种类s,价值hm
m个兑换点的规则分别是a兑换b,汇率是rab,费用是cab,b兑换a,汇率是rba,费用是cba,计算规则是(va-cab)*rab
问能否通过这m个兑换点使他的拥有s这种货币的钱数增加 解题思路
不管怎么兑换,关键是最后还要换回s这种钱,那么必须至少存在一个环,使得最后还能换回s,但是又要求增加钱数,那么这个换必须是正
环。所以问题变成了如何判断图中存在正环。使用Bellman_Ford算法判断正环即可。 样例中第二条边是1.10 不是1.00,看样例看了半天没看懂
注意函数调用时数据类型的变换,包括输入和函数传递参数时的数据类型
*/
#include<cstdio>
#include<cstring>
const int maxn = ; int u[maxn], v[maxn];
double ruv[maxn], cuv[maxn], dis[maxn];
int n, m, en;//边数
bool Bellman_Ford(int s, double hm); int main()
{
int a, b, s;
double hm, rab, cab, rba, cba;
while(scanf("%d%d%d%lf", &n, &m, &s, &hm) != EOF) {
en = ;
for(int i = ; i <= m; i++) {
scanf("%d%d%lf%lf%lf%lf", &a, &b, &rab, &cab, &rba, &cba);
u[en] = a; v[en] = b;
ruv[en] = rab;
cuv[en++] = cab; u[en] = b; v[en] = a;
ruv[en] = rba;
cuv[en++] = cba;
} if(Bellman_Ford(s, hm))
puts("YES");
else
puts("NO");
}
return ;
} bool Bellman_Ford(int s, double hm) {
memset(dis, , sizeof(dis));
dis[s] = hm; for(int i = ; i <= n; i++) {
for(int j = ; j < en; j++) {
if(dis[v[j]] < (dis[u[j]] - cuv[j]) * ruv[j]) {
dis[v[j]] = (dis[u[j]] - cuv[j]) * ruv[j];
if(i == n)
return ;//存在正环
}
}
}
return ;
}
使用结构体封装一下Bellman-Ford算法,再使用队列和邻接表优化一下,代码如下:
使用的时候注意数据类型的使用和结点数全部减1。
#include<cstdio>
#include<vector>
#include<queue>
#include<cstring>
using namespace std; const int maxn = ; struct Edge {
int from, to;
double rait, com;
Edge(int u, int v, double r, double c): from(u), to(v), rait(r), com(c) { }
}; struct Bellman_Ford {
int n, m, s;
double hm;
vector<Edge> edges;
vector<int> G[maxn];
double d[maxn];
bool inq[maxn];
int cnt[maxn]; void init(int n) {
this->n = n;
for(int i = ; i < n; i ++) {
G[i].clear();
}
edges.clear();
} void AddEdge(int from, int to, double rait, double com){
edges.push_back(Edge(from, to, rait, com));
m = edges.size();
G[from].push_back(m - );
} bool bellman_ford (int s, double hm) {
this->s = s;
this->hm = hm;
memset(d, , sizeof(d));
d[s] = hm; memset(inq, , sizeof(inq));
memset(cnt, , sizeof(cnt)); queue<int> q;
q.push(s);
inq[s] = ; while(!q.empty()) {
int u = q.front();
q.pop(); inq[u] = ;
for(int i = ; i < G[u].size(); i++) {
Edge e = edges[G[u][i]];
if(d[e.to] < (d[u] - e.com) * e.rait){
d[e.to] = (d[u] - e.com) * e.rait;
if(!inq[e.to]) {
q.push(e.to);
inq[e.to] = ; cnt[e.to]++;
if(cnt[e.to] > n)
return ;
}
}
}
}
return ;
}
}; struct Bellman_Ford solve;
int main()
{
int s, a, b, n, m;
double hm, rab, cab, rba, cba;
while(scanf("%d%d%d%lf", &n, &m, &s, &hm) != EOF) {
solve.init(n);
for(int i = ; i <= m; i++) {
scanf("%d%d%lf%lf%lf%lf", &a, &b, &rab, &cab, &rba, &cba);
a--;
b--;
solve.AddEdge(a, b, rab, cab);
solve.AddEdge(b, a, rba, cba);
}
int ans = solve.bellman_ford(s-,hm); if(ans)
puts("YES");
else
puts("NO");
}
return ;
}
POJ 1860 Currency Exchange(如何Bellman-Ford算法判断图中是否存在正环)的更多相关文章
- POJ 1860 Currency Exchange (Bellman-Ford)
题目链接:POJ 1860 Description Several currency exchange points are working in our city. Let us suppose t ...
- 最短路(Bellman_Ford) POJ 1860 Currency Exchange
题目传送门 /* 最短路(Bellman_Ford):求负环的思路,但是反过来用,即找正环 详细解释:http://blog.csdn.net/lyy289065406/article/details ...
- POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环)
POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环) Description Several currency ...
- 图论 --- spfa + 链式向前星 : 判断是否存在正权回路 poj 1860 : Currency Exchange
Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 19881 Accepted: 711 ...
- POJ 1860 Currency Exchange (最短路)
Currency Exchange Time Limit : 2000/1000ms (Java/Other) Memory Limit : 60000/30000K (Java/Other) T ...
- POJ 1860 Currency Exchange 最短路+负环
原题链接:http://poj.org/problem?id=1860 Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Tota ...
- POJ 1860 Currency Exchange + 2240 Arbitrage + 3259 Wormholes 解题报告
三道题都是考察最短路算法的判环.其中1860和2240判断正环,3259判断负环. 难度都不大,可以使用Bellman-ford算法,或者SPFA算法.也有用弗洛伊德算法的,笔者还不会SF-_-…… ...
- POJ 1860——Currency Exchange——————【最短路、SPFA判正环】
Currency Exchange Time Limit:1000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u S ...
- POJ 1860 Currency Exchange (bellman-ford判负环)
Currency Exchange 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/E Description Several c ...
随机推荐
- ubuntu中给python3安装opencv
一.安装相关工具包******注意:以下3,4,5,6为可选项,根据需求安装******1.更新库 sudo apt-get update sudo apt-get upgrade 2.安装从源码构建 ...
- 【转】权限管理学习 一、ASP.NET Forms身份认证
[转]权限管理学习 一.ASP.NET Forms身份认证 说明:本文示例使用的VS2017和MVC5. 系统无论大小.牛逼或屌丝,一般都离不开注册.登录.那么接下来我们就来分析下用户身份认证. 简单 ...
- 原生js获取元素的子元素
//使用firstChild //但是下面这种因为有空格,也算其子元素 <lable> <span id="onlinePerson" name="pe ...
- toast
start (e){ wx.showToast({ title: '轮播图', icon: 'success', duration: ...
- 前端基于easyui的mvc扩展
背景 由于MVC的前端是基于jquery.validate和jquery.validate.unobtrusive来实现的,但是当我们要使用其他的ui组件且组件本身就带有完整的验证功能的话,那么要让它 ...
- 在jenkins中调用maven的变量
Maven内置变量说明: ${basedir} 项目根目录(即pom.xml文件所在目录) ${project.build.directory} 构建目录,缺省为target目录 ${project. ...
- 三菱蓝瑟CK4A
日本JDM蓝瑟,而且还是MR的性能版,避震行程也是这么长的.证明这个车子就是这样设计的. 90年代拉力血统的车就这样? 东南厂国产的蓝瑟,原装避震是厦门开发生产,来自于台湾开发工业集团的全资子公司,而 ...
- MongoDB学习小结
启动对应server:cd:到mangodb安装根目录下 mongod --dbpath db路径 创建MangoDB服务: mongod.exe --logpath d:/mongodb/logs/ ...
- WebRTC 学习之 Conference 实现混音混屏
混音 混音的意义就是将多个音频流混成一路音频,在Conference 的实现中有分为终端实现和服务器实现. 1. 终端混音实现: 终端接受到多路(一般是多个用户)的音频流之后,在终端本地将多路音频流混 ...
- centos docker安装和使用
系统要求:centos7,内核3.10或更高一.配置yum源并安装 vim /etc/yum.repos.d/docker.repos [dockerrepo] name=Docker Resposi ...