图片人脸检测

人脸检测使用到的技术是OpenCV,上一节已经介绍了OpenCV的环境安装,点击查看.

往期目录

视频人脸检测——Dlib版(六)
OpenCV添加中文(五)
图片人脸检测——Dlib版(四)
视频人脸检测——OpenCV版(三)
图片人脸检测——OpenCV版(二)
OpenCV环境搭建(一)
更多更新,欢迎访问我的github:https://github.com/vipstone/faceai

功能展示

识别一种图上的所有人的脸,并且标出人脸的位置,画出人眼以及嘴的位置,展示效果图如下:

多张脸识别效果图:

技术实现思路

图片转换成灰色(去除色彩干扰,让图片识别更准确)

图片上画矩形

使用训练分类器查找人脸

具体实现代码

图片转换成灰色

使用OpenCV的cvtColor()转换图片颜色,代码如下:

import cv2

filepath = "img/xingye-1.jpg"
img = cv2.imread(filepath)
# 转换灰色
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 显示图像
cv2.imshow("Image", gray)
cv2.waitKey(0)
cv2.destroyAllWindows()

图片上画矩形

使用OpenCV的rectangle()绘制矩形,代码如下:

import cv2

filepath = "img/xingye-1.jpg"
img = cv2.imread(filepath) # 读取图片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 转换灰色
x = y = 10 # 坐标
w = 100 # 矩形大小(宽、高)
color = (0, 0, 255) # 定义绘制颜色
cv2.rectangle(img, (x, y), (x + w, y + w), color, 1) # 绘制矩形
cv2.imshow("Image", img) # 显示图像
cv2.waitKey(0)
cv2.destroyAllWindows() # 释放所有的窗体资源

使用训练分类器查找人脸

在使用OpenCV的人脸检测之前,需要一个人脸训练模型,格式是xml的,我们这里使用OpenCV提供好的人脸分类模型xml,下载地址:https://github.com/opencv/opencv/tree/master/data/haarcascades 可全部下载到本地,本人存放的路径是:C:\Python36\Lib\site-packages\opencv-master\data\haarcascades.

完整实现代码:

import cv2

filepath = "img/xingye-1.jpg"
img = cv2.imread(filepath) # 读取图片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 转换灰色 # OpenCV人脸识别分类器
classifier = cv2.CascadeClassifier(
"C:\Python36\Lib\site-packages\opencv-master\data\haarcascades\haarcascade_frontalface_default.xml"
)
color = (0, 255, 0) # 定义绘制颜色
# 调用识别人脸
faceRects = classifier.detectMultiScale(
gray, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))
if len(faceRects): # 大于0则检测到人脸
for faceRect in faceRects: # 单独框出每一张人脸
x, y, w, h = faceRect
# 框出人脸
cv2.rectangle(img, (x, y), (x + h, y + w), color, 2)
# 左眼
cv2.circle(img, (x + w // 4, y + h // 4 + 30), min(w // 8, h // 8),
color)
#右眼
cv2.circle(img, (x + 3 * w // 4, y + h // 4 + 30), min(w // 8, h // 8),
color)
#嘴巴
cv2.rectangle(img, (x + 3 * w // 8, y + 3 * h // 4),
(x + 5 * w // 8, y + 7 * h // 8), color) cv2.imshow("image", img) # 显示图像
c = cv2.waitKey(10) cv2.waitKey(0)
cv2.destroyAllWindows()

图片人脸检测——OpenCV版(二)的更多相关文章

  1. 视频人脸检测——OpenCV版(三)

    视频人脸检测是图片人脸检测的高级版本,图片检测详情点击查看我的上一篇<图片人脸检测——OpenCV版(二)> 实现思路: 调用电脑的摄像头,把摄像的信息逐帧分解成图片,基于图片检测标识出人 ...

  2. 图片人脸检测——Dlib版(四)

    上几篇给大家讲了OpenCV的图片人脸检测,而本文给大家带来的是比OpenCV更加精准的图片人脸检测Dlib库. 点击查看往期: <图片人脸检测——OpenCV版(二)> <视频人脸 ...

  3. 视频人脸检测——Dlib版(六)

    往期目录 视频人脸检测--Dlib版(六) OpenCV添加中文(五) 图片人脸检测--Dlib版(四) 视频人脸检测--OpenCV版(三) 图片人脸检测--OpenCV版(二) OpenCV环境搭 ...

  4. 图片人脸检测(OpenCV版)

    图片人脸检测 人脸检测使用到的技术是OpenCV,上一节已经介绍了OpenCV的环境安装,点击查看. 功能展示 识别一种图上的所有人的脸,并且标出人脸的位置,画出人眼以及嘴的位置,展示效果图如下: 多 ...

  5. 在opencv3中进行图片人脸检测

    在opencv中,人脸检测用的是harr或LBP特征,分类算法用的是adaboost算法.这种算法需要提前训练大量的图片,非常耗时,因此opencv已经训练好了,把训练结果存放在一些xml文件里面.在 ...

  6. 25行 Python 代码实现人脸检测——OpenCV 技术教程

    这是篇是利用 OpenCV 进行人脸识别的技术讲解.阅读本文之前,这是注意事项: 建议先读一遍本文再跑代码——你需要理解这些代码是干什么的.成功跑一遍不是目的,能够举一反三.在新任务上找出 bug 才 ...

  7. 基于TensorFlow Object Detection API进行迁移学习训练自己的人脸检测模型(二)

    前言 已完成数据预处理工作,具体参照: 基于TensorFlow Object Detection API进行迁移学习训练自己的人脸检测模型(一) 设置配置文件 新建目录face_faster_rcn ...

  8. 机器学习: Viola-Jones 人脸检测算法解析(二)

    上一篇博客里,我们介绍了VJ人脸检测算法的特征,就是基于积分图像的矩形特征,这些矩形特征也被称为Haar like features, 通常来说,一张图像会生成一个远远高于图像维度的特征集,比如一个 ...

  9. C#使用Emgu CV来进行图片人脸检测

    项目需求:某市级组织考试,在考试前需审核考生采集表中的考生照片是否合格,由于要审核的考生信息采集表有很多,原先进行的是手动人工审核,比较费时费力,审核的要求也很简单,并不判断考生是否是图片本人(身份验 ...

随机推荐

  1. 利用springloaded进行java jar&class的动态替换

    之前已经写过一篇关于class的动态替换博客,今天我们来介绍一下如何用springloaded进行jar&class的动态替换. 首先说一下实验过程,结合了目前我正在做的项目,这个项目是一个前 ...

  2. 差分模版题(需理解才明白)AT2442 フェーン現象 (Foehn Phenomena)

    https://www.luogu.org/problemnew/show/AT2442 #include <bits/stdc++.h> #define read read() #def ...

  3. <fieldset>标签

    <!DOCTYPE html> <html lang="en"> <head> <meta http-equiv="Conten ...

  4. .NET 4.0中的泛型逆变和协变

    转载自:http://www.cnblogs.com/Ninputer/archive/2008/11/22/generic_covariant.html:自己加了一些理解 随Visual Studi ...

  5. Note | Markdown

    目录 一.代码段 1.简单代码 2.大段代码 二.块注释 Blockquote 三.标题设置 四.字体 1.斜体 2.粗体 3.下划线 方案1:行内 HTML 方案2:html的span标签.设置行内 ...

  6. 简单好用的时间选择插件My97datepicker

    我们经常会需要验证字符串的格式,比如密码长度范围.电子邮件格式.固定电话号码和手机号码格式等,这个时候我们经常会需要用到正则表达式.但是正则表达式用起来性能会低一点,所以在需要验证的时候能不使用正则表 ...

  7. 基于esp32的IIC通讯

    本文源码地址在:http://download.csdn.net/download/noticeable/9962029 IIC 通讯应该是当代比较常用的几种通讯方式之一,其无需特殊的IO接口,连线方 ...

  8. The First BoKe

    A.如何看待师生关系 说起师生关系,我们每个人都有不同的见解,但无一例外,师者,传道授业解惑也,老师的为学生传授的才能知识,是学生今后发展的宝贵财富,无论是从哪方面,都可以对学生起着积极向上的作用.而 ...

  9. [UWP/WPF]在应用开发中安全使用文件资源

    在WPF或者UWP应用开发中,有时候会不可避免的需要操作文件系统(创建文件/目录),这时候有几个坑是需要大家注意下的. 创建文件或目录时的非法字符检测 在Windows系统中,我们创建文件时会注意到, ...

  10. 任务调度及远端管理(基于Quartz.net)

    这篇文章我们来了解一些项目中的一个很重要的功能:任务调度 可能有些同学还不了解这个,其实简单点说任务调度与数据库中的Job是很相似的东西 只不过是运行的物理位置与管理方式有点不一样,从功能上来说我觉得 ...