题意:给定n棵树,其中有一些已经涂了颜色,然后让你把没有涂色的树涂色使得所有的树能够恰好分成k组,让你求最少的花费是多少。

析:这是一个DP题,dp[i][j][k]表示第 i 棵树涂第 j 种颜色恰好分成 k 组,然后状态转移方程是什么呢?

如果第 i 棵已经涂了,那么要么和第 i-1 棵一组,要么不和第 i-1 棵一组。

如果第 i 棵没有涂,和上面差不多,就是加上要涂的费用,并且要选择最少的。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <list>
#include <sstream>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e2 + 5;
const int mod = 1e9 + 7;
const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1};
const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
LL cor[maxn], w[maxn][maxn];
LL dp[maxn][maxn][maxn]; int main(){
int K;
while(scanf("%d %d %d", &n, &m, &K) == 3){
for(int i = 1; i <= n; ++i) scanf("%I64d", &cor[i]);
for(int i = 1; i <= n; ++i) for(int j = 1; j <= m; ++j) scanf("%I64d", &w[i][j]); for(int i = 0; i <= n; ++i) for(int j = 0; j <= m; ++j)
for(int k = 0; k <= K; ++k) dp[i][j][k] = LNF; dp[0][0][0] = 0;
for(int i = 1; i <= n; ++i){
if(cor[i]){
for(int k = 1; k <= K; ++k){
dp[i][cor[i]][k] = Min(dp[i][cor[i]][k], dp[i-1][cor[i]][k]);
for(int j = 0; j <= m; ++j){
if(j != cor[i]) dp[i][cor[i]][k] = Min(dp[i][cor[i]][k], dp[i-1][j][k-1]);
}
}
}
else{
for(int k = 1; k <= K; ++k){
for(int j = 1; j <= m; ++j){
dp[i][j][k] = Min(dp[i][j][k], dp[i-1][j][k] + w[i][j]);
for(int l = 0; l <= m; ++l){
if(l != j) dp[i][j][k] = Min(dp[i][j][k], dp[i-1][l][k-1] + w[i][j]);
}
}
}
}
}
LL ans = LNF;
for(int i = 1; i <= m; ++i) ans = Min(ans, dp[n][i][K]);
if(ans == LNF) ans = -1;
cout << ans << endl;
}
return 0;
}

CodeForces 711C Coloring Trees (DP)的更多相关文章

  1. Codeforces 677C. Coloring Trees dp

    C. Coloring Trees time limit per test:2 seconds memory limit per test:256 megabytes input:standard i ...

  2. codeforces 711C Coloring Trees(DP)

    题目链接:http://codeforces.com/problemset/problem/711/C O(n^4)的复杂度,以为会超时的 思路:dp[i][j][k]表示第i棵数用颜色k涂完后bea ...

  3. 【动态规划】Codeforces 711C Coloring Trees

    题目链接: http://codeforces.com/problemset/problem/711/C 题目大意: 给N棵树,M种颜色,已经有颜色的不能涂色,没颜色为0,可以涂色,每棵树I涂成颜色J ...

  4. CodeForces 711C Coloring Trees

    简单$dp$. $dp[i][j][k]$表示:前$i$个位置染完色,第$i$个位置染的是$j$这种颜色,前$i$个位置分成了$k$组的最小花费.总复杂度$O({n^4})$. #pragma com ...

  5. codeforces 711C C. Coloring Trees(dp)

    题目链接: C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  6. Codeforces Round #369 (Div. 2) C. Coloring Trees DP

    C. Coloring Trees   ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the pa ...

  7. CodeForces #369 C. Coloring Trees DP

    题目链接:C. Coloring Trees 题意:给出n棵树的颜色,有些树被染了,有些没有.现在让你把没被染色的树染色.使得beauty = k.问,最少使用的颜料是多少.   K:连续的颜色为一组 ...

  8. C. Coloring Trees DP

    传送门:http://codeforces.com/problemset/problem/711/C 题目: C. Coloring Trees time limit per test 2 secon ...

  9. Code Forces 711C Coloring Trees

    C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

随机推荐

  1. 【JavaScript学习笔记】调用google搜索

    <html> <form method=get action="http://www.google.com/search"> <a href=&quo ...

  2. php flock注意事项

    对于实际的运用,必须将其添加到所有使用的文件脚本中 但注意:其函数无法再NFS或其他网络文件系统中使用也无法在多线程服务器API中使用.

  3. HDU 1015 Safecracker

    解题思路:这题相当诡异,样例没过,交了,A了,呵呵,因为理论上是可以通过的,所以 我交了一发,然后就神奇的过了.首先要看懂题目. #include<cstdio> #include< ...

  4. Activity传递对象的方法

    //Serializeable传递对象的方法 public void SerializeMethod(){ Person mPerson = new Person(); mPerson.setName ...

  5. StringUtils判断字符串是否为空的方法

    public static boolean isEmpty(String str)   判断某字符串是否为空,为空的标准是 str==null 或 str.length()==0   下面是 Stri ...

  6. 别人的的MYSQL学习心得(十五) 日志

    我的MYSQL学习心得(十五) 日志 我的MYSQL学习心得(一) 简单语法 我的MYSQL学习心得(二) 数据类型宽度 我的MYSQL学习心得(三) 查看字段长度 我的MYSQL学习心得(四) 数据 ...

  7. synchronized作用范围及用法

    1.多线程的同步: 1.1.同步机制: 在多线程中,可能有多个线程试图访问一个有限的资源,必须预防这种情况的发生.所以引入了同步机制:在线程使用一个资源时为其加锁,这样其他的线程便不能访问那个资源了, ...

  8. 使用poi解析Excel

    解析XLS package xls; import java.io.FileInputStream; import java.io.IOException; import java.io.InputS ...

  9. HashBiMap

    HashBiMap  AbstractMap类实现了Map接口定义的一些方法,而BiMap类定义了其子类需要实现的一些方法,使得所有实现BiMap的类必须符合其独有的特性:键.值都是唯一的.HashB ...

  10. C++容器和算法

    转自:http://www.cnblogs.com/haiyupeter/archive/2012/07/29/2613145.html 容器:某一类型数据的集合. C++标准顺序容器包括:vecto ...