所用数据文件:data1.txt

@RELATION data1

@ATTRIBUTE one REAL
@ATTRIBUTE two REAL @DATA
0.184000 0.482000
0.152000 0.540000
0.152000 0.596000
0.178000 0.626000
0.206000 0.598000
0.230000 0.562000
0.224000 0.524000
0.204000 0.540000
0.190000 0.572000
0.216000 0.608000
0.240000 0.626000
0.256000 0.584000
0.272000 0.546000
0.234000 0.468000
0.222000 0.490000
0.214000 0.414000
0.252000 0.336000
0.298000 0.336000
0.316000 0.376000
0.318000 0.434000
0.308000 0.480000
0.272000 0.408000
0.272000 0.462000
0.280000 0.524000
0.296000 0.544000
0.340000 0.534000
0.346000 0.422000
0.354000 0.356000
0.160000 0.282000
0.160000 0.282000
0.156000 0.398000
0.138000 0.466000
0.154000 0.442000
0.180000 0.334000
0.184000 0.300000
0.684000 0.420000
0.678000 0.494000
0.710000 0.592000
0.716000 0.508000
0.744000 0.528000
0.716000 0.540000
0.692000 0.540000
0.696000 0.494000
0.722000 0.466000
0.738000 0.474000
0.746000 0.484000
0.750000 0.500000
0.746000 0.440000
0.718000 0.446000
0.692000 0.466000
0.746000 0.418000
0.768000 0.460000
0.272000 0.290000
0.240000 0.376000
0.212000 0.410000
0.154000 0.564000
0.252000 0.704000
0.298000 0.714000
0.314000 0.668000
0.326000 0.566000
0.344000 0.468000
0.324000 0.632000
0.164000 0.688000
0.216000 0.684000
0.392000 0.682000
0.392000 0.628000
0.392000 0.518000
0.398000 0.502000
0.392000 0.364000
0.360000 0.308000
0.326000 0.308000
0.402000 0.342000
0.404000 0.418000
0.634000 0.458000
0.650000 0.378000
0.698000 0.348000
0.732000 0.350000
0.766000 0.364000
0.800000 0.388000
0.808000 0.428000
0.826000 0.466000
0.842000 0.510000
0.842000 0.556000
0.830000 0.594000
0.772000 0.646000
0.708000 0.654000
0.632000 0.640000
0.628000 0.564000
0.624000 0.352000
0.650000 0.286000
0.694000 0.242000
0.732000 0.214000
0.832000 0.214000
0.832000 0.264000
0.796000 0.280000
0.778000 0.288000
0.770000 0.294000
0.892000 0.342000
0.910000 0.366000
0.910000 0.394000
0.872000 0.382000
0.774000 0.314000
0.718000 0.252000
0.688000 0.284000
0.648000 0.322000
0.602000 0.460000
0.596000 0.496000
0.570000 0.550000
0.564000 0.592000
0.574000 0.624000
0.582000 0.644000
0.596000 0.664000
0.662000 0.704000
0.692000 0.722000
0.710000 0.736000
0.848000 0.732000
0.888000 0.686000
0.924000 0.514000
0.914000 0.470000
0.880000 0.492000
0.848000 0.706000
0.730000 0.736000
0.676000 0.734000
0.628000 0.732000
0.782000 0.708000
0.806000 0.674000
0.830000 0.630000
0.564000 0.730000
0.554000 0.538000
0.570000 0.502000
0.572000 0.432000
0.590000 0.356000
0.652000 0.232000
0.676000 0.178000
0.684000 0.152000
0.728000 0.172000
0.758000 0.148000
0.864000 0.176000
0.646000 0.242000
0.638000 0.254000
0.766000 0.276000
0.882000 0.278000
0.900000 0.278000
0.906000 0.302000
0.892000 0.316000
0.570000 0.324000
0.798000 0.150000
0.832000 0.114000
0.714000 0.156000
0.648000 0.154000
0.644000 0.212000
0.642000 0.250000
0.658000 0.284000
0.710000 0.296000
0.794000 0.288000
0.846000 0.260000
0.856000 0.304000
0.858000 0.392000
0.858000 0.476000
0.778000 0.640000
0.736000 0.662000
0.718000 0.690000
0.634000 0.692000
0.596000 0.710000
0.570000 0.720000
0.554000 0.732000
0.548000 0.686000
0.524000 0.740000
0.598000 0.768000
0.660000 0.796000

前言:Kmeans是一种非常经典的聚类算法。它利用簇的中心到对象的距离来分配每个对象的簇所属关系。同时迭代的进行簇的中心的更新以及簇分配的更新,直到收敛。

下面是调用weka包中实现的kmeans的代码

package others;

import java.io.File;

import weka.clusterers.SimpleKMeans;
import weka.core.DistanceFunction;
import weka.core.Instances;
import weka.core.converters.ArffLoader; public class ArrayListTest { public static void main(String[] args){
Instances ins = null; SimpleKMeans KM = null;
DistanceFunction disFun = null; try {
// 读入样本数据
File file = new File("data/data1.txt");
ArffLoader loader = new ArffLoader();
loader.setFile(file);
ins = loader.getDataSet(); // 初始化聚类器 (加载算法)
KM = new SimpleKMeans();
KM.setNumClusters(4); //设置聚类要得到的类别数量
KM.buildClusterer(ins); //开始进行聚类
System.out.println(KM.preserveInstancesOrderTipText());
// 打印聚类结果
System.out.println(KM.toString()); } catch(Exception e) {
e.printStackTrace();
}
}
}

调用WEKA包进行kmeans聚类(java)的更多相关文章

  1. 在Eclipse中调用weka包实现分类

    1.如题. 最近写了一个FCM的聚类算法,希望能够可视化结果,因此一个想法是调用weka中的包,使自己的程序可以可视化.这里参考了网络上的方法,首先实现在Eclipse中调用weka包实现分类的功能. ...

  2. k-means聚类JAVA实例

    <mahout in action>第六章. datafile/cluster/simple_k-means.txt数据集例如以下: 1 1 2 1 1 2 2 2 3 3 8 8 8 9 ...

  3. php通过JavaBridge调用Java类库和不带包的自定义java类成功 但是调用带包的自定义Java类报错,该怎么解决

    php通过JavaBridge调用Java类库和不带包的自定义java类成功 但是调用带包的自定义Java类报错,Class.forName("com.mysql.jdbc.Driver&q ...

  4. 转载: scikit-learn学习之K-means聚类算法与 Mini Batch K-Means算法

    版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ================== ...

  5. 4.无监督学习--K-means聚类

    K-means方法及其应用 1.K-means聚类算法简介: k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低.主要处理过程包括: 1.随机选择k个点作为 ...

  6. 【Java】K-means算法Java实现以及图像切割

    1.K-means算法简述以及代码原型 数据挖掘中一个重要算法是K-means.我这里就不做具体介绍.假设感兴趣的话能够移步陈皓的博客: http://www.csdn.net/article/201 ...

  7. 二分Kmeans的java实现

    刚刚研究了Kmeans.Kmeans是一种十分简单的聚类算法.可是他十分依赖于用户最初给定的k值.它无法发现随意形状和大小的簇.最适合于发现球状簇.他的时间复杂度为O(tkn).kmeans算法有两个 ...

  8. 第一周-调用weka算法进行数据挖掘

    第一周-调用weka算法进行数据挖掘 简单数据集data.txt @relation weather @attribute outlook {sunny, overcast, rainy} @attr ...

  9. Spark MLlib中KMeans聚类算法的解析和应用

    聚类算法是机器学习中的一种无监督学习算法,它在数据科学领域应用场景很广泛,比如基于用户购买行为.兴趣等来构建推荐系统. 核心思想可以理解为,在给定的数据集中(数据集中的每个元素有可被观察的n个属性), ...

随机推荐

  1. CERT_KEY_CONTEXT_PROP_ID,CERT_KEY_PROV_INFO_PROP_ID,CERT_KEY_PROV_HANDLE_PROP_ID和CERT_KEY_SPEC_PROP_ID

    上面四个属性是CertSetCertificateContextProperty或CertGetCertificateContextProperty可以为证书上下文设置的几个属性,下面对它们的关联简单 ...

  2. c# win form 显示支付宝二维码图片

    System.Net.WebClient web = new System.Net.WebClient(); byte[] buffer = web.DownloadData(网络图片的地址); we ...

  3. Eclipse中添加web dynamic project

    因为我的eclipse版本是kepler service release 2,所以我用了这个链接,http://download.eclipse.org/releases/helios/ 参考链接:  ...

  4. SparkSql官方文档中文翻译(java版本)

    1 概述(Overview) 2 DataFrames 2.1 入口:SQLContext(Starting Point: SQLContext) 2.2 创建DataFrames(Creating ...

  5. Going Home (hdu 1533 最小费用流)

    集训的图论都快结束了,我才看懂了最小费用流,惭愧啊. = = 但是今天机械键盘到了,有弄好了自行车,好高兴\(^o^)/~ 其实也不是看懂,就会套个模板而已.... 这题最重要的就是一个: 多组输入一 ...

  6. c++学习-特殊类成员

    静态变量: #include<iostream> #include<string> #include <typeinfo> using namespace std; ...

  7. listview当选中某一个item时设置背景色其他的不变

    listview当选中某一个item时设置背景色其他的不变: 可以使用listview.setOnFoucsChangeListener(listener) ; /** * listview获得焦点和 ...

  8. Eclipse "IOConsole updater" has encounter a problem

    因为调试方便,把eclipse里的控制台输出调整为无限制了,结果各种log打了一夜居然把堆内存打爆了. 还是改回去吧. 在日志输出的状态下(貌似没日志的时候没法选)右键console的内容区域 -&g ...

  9. Java调用ffmepg+mencoder视频格式转换(*)

    PS: 建议大家在官网下载最新的资源 其他格式转FLV格式,可以用Java调用ffmpeg和memcoder实现 ffmepg: D:\ffmpeg\bin\ffmpeg.exe -i E:\1.mp ...

  10. Ubuntu下删除配置错误或者失败的安装包

    aptitude purge $(dpkg -l|grep ^rc|awk '{ print $2 }') 解释:dpkg -l 列出系统中所有安装的软件,如果是已经删除的软件(有残存的配置文件),那 ...