New Year is coming in Tree World! In this world, as the name implies, there are n cities connected by n - 1 roads, and for any two distinct cities there always exists a path between them. The cities are numbered by integers from 1 to n, and the roads are numbered by integers from 1 to n - 1. Let's define d(u, v) as total length of roads on the path between city u and city v.

As an annual event, people in Tree World repairs exactly one road per year. As a result, the length of one road decreases. It is already known that in the i-th year, the length of the ri-th road is going to become wi, which is shorter than its length before. Assume that the current year is year 1.

Three Santas are planning to give presents annually to all the children in Tree World. In order to do that, they need some preparation, so they are going to choose three distinct cities c1, c2, c3 and make exactly one warehouse in each city. The k-th (1 ≤ k ≤ 3) Santa will take charge of the warehouse in city ck.

It is really boring for the three Santas to keep a warehouse alone. So, they decided to build an only-for-Santa network! The cost needed to build this network equals to d(c1, c2) + d(c2, c3) + d(c3, c1) dollars. Santas are too busy to find the best place, so they decided to choose c1, c2, c3 randomly uniformly over all triples of distinct numbers from 1 to n. Santas would like to know the expected value of the cost needed to build the network.

However, as mentioned, each year, the length of exactly one road decreases. So, the Santas want to calculate the expected after each length change. Help them to calculate the value.

Input

The first line contains an integer n (3 ≤ n ≤ 105) — the number of cities in Tree World.

Next n - 1 lines describe the roads. The i-th line of them (1 ≤ i ≤ n - 1) contains three space-separated integers aibili(1 ≤ ai, bi ≤ nai ≠ bi, 1 ≤ li ≤ 103), denoting that the i-th road connects cities ai and bi, and the length of i-th road is li.

The next line contains an integer q (1 ≤ q ≤ 105) — the number of road length changes.

Next q lines describe the length changes. The j-th line of them (1 ≤ j ≤ q) contains two space-separated integers rjwj(1 ≤ rj ≤ n - 1, 1 ≤ wj ≤ 103). It means that in the j-th repair, the length of the rj-th road becomes wj. It is guaranteed thatwj is smaller than the current length of the rj-th road. The same road can be repaired several times.

Output

Output q numbers. For each given change, print a line containing the expected cost needed to build the network in Tree World. The answer will be considered correct if its absolute and relative error doesn't exceed 10 - 6.

Sample test(s)
input
3
2 3 5
1 3 3
5
1 4
2 2
1 2
2 1
1 1
output
14.0000000000
12.0000000000
8.0000000000
6.0000000000
4.0000000000
input
6
1 5 3
5 3 2
6 1 7
1 4 4
5 2 3
5
1 2
2 1
3 5
4 1
5 2
output
19.6000000000
18.6000000000
16.6000000000
13.6000000000
12.6000000000
Note

Consider the first sample. There are 6 triples: (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1). Because n = 3, the cost needed to build the network is always d(1, 2) + d(2, 3) + d(3, 1) for all the triples. So, the expected cost equals tod(1, 2) + d(2, 3) + d(3, 1).

题意:

一棵树,n个节点,编号为1~n,n-1条边按输入的顺序编号为1~n-1,给出n-1条边的权值

在树上任意选择3个点c1,c2,c3(不互相同),则连接这3个点的总花费:

dis(c1,c2)+dis(c1,c3)+dis(c2,c3)

注意:3个点的选择是随机的

接着q个改变,

每一个改变给出i w:把第i条边的权值改为w

每一个改变后,输出现在选择3个点总花费的期望。

思路:

一共有n*(n-1)*(n-2)种情况

在任意一种情况中,一条边要么没有被经过,要么被经过了2次

对于每一条边对期望的贡献=该边被经过的概率*该边的边长

而总期望=所有边的贡献之和

被经过的概率=1.0-没有被经过的概率

对于边e=(u,v)没有被经过,3个点要么都在u一侧,要么都在v一侧,根据siz数组可以轻易得到边没有被经过的概率

 #include<cstdio>
#include<cstring> using namespace std; const int maxn=1e5+;
int siz[maxn]; //以节点i为根的子树的节点个数
int dep[maxn]; //节点深度
double pro[maxn]; //第i条边被经过的概率
int e[maxn][]; struct Edge
{
int to,next;
};
Edge edge[maxn<<];
int head[maxn];
int tot; void addedge(int u,int v)
{
edge[tot].to=v;
edge[tot].next=head[u];
head[u]=tot++;
} void init()
{
memset(head,-,sizeof head);
tot=;
} //方便计算的函数
double the_pro(double a,int n)
{
if(a<)
return 0.0;
return (a*(a-1.0)*(a-2.0))/(n*(n-1.0)*(n-2.0));
} void swap(int &a,int &b)
{
a^=b;
b^=a;
a^=b;
} void solve(int );
void dfs(int ,int ); int main()
{
init();
int n;
scanf("%d",&n);
for(int i=;i<n;i++)
{
scanf("%d %d %d",&e[i][],&e[i][],&e[i][]);
addedge(e[i][],e[i][]);
addedge(e[i][],e[i][]);
}
solve(n);
return ;
} void solve(int n)
{
dep[]=;
dfs(,); for(int i=;i<=n;i++)
{
if(dep[e[i][]]>dep[e[i][]])
swap(e[i][],e[i][]);
} for(int i=;i<n;i++)
{
pro[i]=1.0-the_pro(n-siz[e[i][]],n)-the_pro(siz[e[i][]],n);
pro[i]*=2.0;
}
double ans=0.0;
for(int i=;i<n;i++)
{
ans+=pro[i]*e[i][];
}
//ans表示最开始的期望
int q;
scanf("%d",&q);
for(int j=;j<=q;j++)
{
int i,w;
scanf("%d %d",&i,&w);
ans+=pro[i]*(w-e[i][]);
//边权改变,期望跟着改变
printf("%.10f\n",ans);
e[i][]=w;
}
return ;
} void dfs(int u,int pre)
{
siz[u]=;
for(int i=head[u];~i;i=edge[i].next)
{
int v=edge[i].to;
if(v==pre)
continue;
dep[v]=dep[u]+;
dfs(v,u);
siz[u]+=siz[v];
}
}

CF 500D New Year Santa Network tree 期望 好题的更多相关文章

  1. Good Bye 2014 D. New Year Santa Network 图论+期望

    D. New Year Santa Network   New Year is coming in Tree World! In this world, as the name implies, th ...

  2. Codeforces 500D New Year Santa Network(树 + 计数)

    D. New Year Santa Network time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  3. Codeforces 500D. New Year Santa Network

    题目大意 给你一颗有\(n\)个点的树\(T\),边上有边权. 规定,\(d(i,j)\)表示点i到点j路径上的边权之和. 给你\(q\)次询问,每次询问格式为\(i, j\),表示将按输入顺序排序的 ...

  4. cf500D New Year Santa Network

    D. New Year Santa Network time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  5. D. New Year Santa Network 解析(思維、DFS、組合、樹狀DP)

    Codeforce 500 D. New Year Santa Network 解析(思維.DFS.組合.樹狀DP) 今天我們來看看CF500D 題目連結 題目 給你一棵有邊權的樹,求現在隨機取\(3 ...

  6. CF 600E. Lomsat gelral(dsu on tree)

    解题思路 \(dsu\) \(on\) \(tree\)的模板题.暴力而优雅的算法,轻儿子的信息暴力清空,重儿子的信息保留,时间复杂度\(O(nlogn)\) 代码 #include<iostr ...

  7. 【codeforces 500D】New Year Santa Network

    [题目链接]:http://codeforces.com/problemset/problem/500/D [题意] 有n个节点构成一棵树; 让你随机地选取3个不同的点a,b,c; 然后计算dis(a ...

  8. cf 500 D. New Year Santa Network

    直接按边分,2个点在边的一边,1个在另一边,组合出来就是这个边对答案的贡献,权值换了就再重新算个数而已. #include <bits/stdc++.h> #define LL long ...

  9. (中等) CF 555E Case of Computer Network,双连通+树。

    Andrewid the Android is a galaxy-known detective. Now he is preparing a defense against a possible a ...

随机推荐

  1. Codeforces Round #119 (Div. 2)

    A. Cut Ribbon \(f(i)\)表示长为\(i\)的布条最多可以剪几段. B. Counting Rhombi \(O(wh)\)枚举中心计算 C. Permutations 将序列一映射 ...

  2. URAL 1072 Routing(最短路)

    Routing Time limit: 1.0 secondMemory limit: 64 MB There is a TCP/IP net of several computers. It mea ...

  3. HDU-4455 Substrings(DP)

    题目大意:给一个长度为n的整数序列,定义egg(i,j)表示区间[i,j]中不同的数的个数.q次询问,每次询问x,表示求所有长度为x连续区间的 egg 之和. 题目分析:定义dp(len)表示所有长度 ...

  4. hdu4725 拆点+最短路

    题意:有 n 个点,每个点有它所在的层数,最多有 n 层,相邻两层之间的点可以互相到达,消耗 c (但同一层并不能直接到达),然后还有一些额外的路径,可以在两点间互相到达,并且消耗一定费用.问 1 点 ...

  5. QT GUI @创建新的工程

    开发环境: Qt 4.5 Qt Creator 1.3.0 新工程创建步骤: 1. 单击运行Qt Creator,进入欢迎页面.选择"File" -> "New F ...

  6. Java——多线程安全问题

     静态代码块中没有this /* * 线程安全问题产生的原因: * 1.多个线程操作共享的数据 * 2.操作共享数据的线程代码有多条 * * 当一个线程在执行操作共享数据的多条代码过程中,其他线程 ...

  7. linux下crontab定时执行本地脚本和定时访问指定url

    https://my.oschina.net/u/2487410/blog/683308 使用linux curl命令讲解:http://www.linuxdiyf.com/linux/2800.ht ...

  8. 【计算机视觉领域】常用的 feature 提取方法,feature 提取工具包

    [计算机视觉领域]常用的 feature 提取方法,feature 提取工具包 利用 VL 工具包进行各种特征的提取: VL 工具包官网地址:http://www.vlfeat.org/index.h ...

  9. http cookies

    https://msdn.microsoft.com/en-us/library/ms178194.aspx?f=255&MSPPError=-2147217396 http://www.as ...

  10. 【转】JavaScript实际应用:父子页面交互

    转自:http://blog.csdn.net/xinyueyuli/article/details/509893 最近项目开发中需要子窗口和父窗口交互的内容,基本上无非就是把子窗口的信息传递给父窗口 ...