题意:

如果有2个排列a,b,定义序列c为:

c[i] = (a[i] + b[i] - 2) % n + 1

但是,明显c不一定是一个排列

现在,给出排列的长度n (1 <= n <= 16)

问有多少种a,b的排列的组合的方案,使得得到的c也是一个排列

排列的组合a = x,b = y 与 排列的组合a = y,b = x算是2种方案

思路:

有3个排列,不妨假设排列a 为1,2,3,...,n

这样结果再 * n! 就是答案

考虑状压dp

j是一个16位的数,记录b的n个数被用了哪些数

f(i,j)表示a用了1~i,b用了j记录的那些数,产生的c的前i个的方案数

init : f(0,0) = 1

ans = f(n,(1<<n)-1) * n!转移方程:

没法转移阿,因为我们还必须知道c哪些数用了,哪些数没有用

如果再加一维记录c的状态的话,数组开不下了

那就写成搜索的形式了

dfs(u,v,w) 表示a用了1~u,b,c分别用了v,w记录的那些数

if(u == n + 1)  ans++;

但是这样会超时啊,1 <= n <= 16,这么小,那就直接打表了

代码:

  //File Name: cf285D.cpp
//Author: long
//Mail: 736726758@qq.com
//Created Time: 2016年07月09日 星期六 16时44分05秒 #include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream> #define LL long long using namespace std; const int MOD = (int)1e9 + ; LL ans,n;
LL jie[];
int res[] = {,,,,,,,,,,,,,,,,}; void init(){
jie[] = ;
for(int i=;i<;i++)
jie[i] = i * jie[i-] % MOD;
//ans = 0;
//dfs(1,0,0);
} void dfs(int a,int b,int c){
if(a == n + ){
ans++;
if(ans >= MOD)
ans -= MOD;
return ;
}
int v;
for(int i=;i<n;i++){
if(((<<i) & b) == ){
v = (i + a - ) % n;
if(((<<v) & c) == )
dfs(a+,b|(<<i),c|(<<v));
}
}
} int main(){
init();
while(~scanf("%d",&n)){
printf("%d\n",res[n]);
}
return ;
}

codeforces 285 D. Permutation Sum 状压 dfs打表的更多相关文章

  1. ZOJ 1609 Equivalence(状压+dfs减枝)

    ZOJ Problem Set - 1609 Equivalence Time Limit: 5 Seconds      Memory Limit: 32768 KB When learning m ...

  2. [Codeforces 1208D]Restore Permutation (树状数组)

    [Codeforces 1208D]Restore Permutation (树状数组) 题面 有一个长度为n的排列a.对于每个元素i,\(s_i\)表示\(\sum_{j=1,a_j<a_i} ...

  3. bzoj1725: [Usaco2006 Nov]Corn Fields牧场的安排(状压dfs)

    1725: [Usaco2006 Nov]Corn Fields牧场的安排 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1122  Solved: 80 ...

  4. 状压dfs小记

    一点前(tu)言(cao) 真的考起dfs来可谓是什么都能往dfs上套 状压不止能dp,还能与dfs结合成为搜索好(duliu)题 剪枝卡常司空见惯(打开题解一看并不是纯dfs,emmmm) 开始正文 ...

  5. 【bzoj5161】最长上升子序列 状压dp+打表

    题目描述 现在有一个长度为n的随机排列,求它的最长上升子序列长度的期望. 为了避免精度误差,你只需要输出答案模998244353的余数. 输入 输入只包含一个正整数n.N<=28 输出 输出只包 ...

  6. UVALive 6255:Kingdoms(状压DFS)

    题目链接 题意 给出n个王国和n*n的矩阵,mp[i][j] 代表第 i 个王国欠第 j 个王国 mp[i][j] 块钱.如果当前的王国处于负债状态,那么这个王国就会被消除,和它相连的王国的债务都会被 ...

  7. Codeforces Round #363 LRU(概率 状压DP)

    状压DP: 先不考虑数量k, dp[i]表示状态为i的概率,状态转移方程为dp[i | (1 << j)] += dp[i],最后考虑k, 状态表示中1的数量为k的表示可行解. #incl ...

  8. Codeforces 429C Guess the Tree(状压DP+贪心)

    吐槽:这道题真心坑...做了一整天,我太蒻了... 题意 构造一棵 $ n $ 个节点的树,要求满足以下条件: 每个非叶子节点至少包含2个儿子: 以节点 $ i $ 为根的子树中必须包含 $ c_i ...

  9. JZYZOJ1530 [haoi2013]开关控制 状压 dfs 折半搜索

    http://172.20.6.3/Problem_Show.asp?id=1530 元宵节快要到了,某城市人民公园将举办一次灯展.Dr.Kong准备设计出一个奇妙的展品,他计划将编号为1到N的N(1 ...

随机推荐

  1. spark优化之优化数据结构

    概序: 要减少内存的消耗,除了使用高效的序列化类库以外,还有一个很重要的事情,就是优化数据结构.从而避免Java语法特性中所导致的额外内存的开销,比如基于指针的Java数据结构,以及包装类型. 有一个 ...

  2. 课堂所讲整理:HTML--7JavaScript的DOM操作

    1.DOM的基本概念 DOM是文档对象模型,这种模型为树模型:文档是指标签文档:对象是指文档中每个元素:模型是指抽象化的东西. 2.Window对象操作 一.属性和方法: 属性(值或者子对象): op ...

  3. C++虚函数、赋值兼容原则

    #include <iostream.h> class A { public: void f1() { cout << "a" << endl; ...

  4. js获取客户端操作系统

    function detectOS() { var sUserAgent = navigator.userAgent; var isWin = (navigator.platform == " ...

  5. java多线程之:深入JVM锁机制2-Lock (转载)

    前文(深入JVM锁机制-synchronized)分析了JVM中的synchronized实现,本文继续分析JVM中的另一种锁Lock的实现.与synchronized不同的是,Lock完全用Java ...

  6. java基础之:详解内部类(转载)

    可以将一个类的定义放在另一个类的定义内部,这就是内部类. 内部类是一个非常有用的特性但又比较难理解使用的特性(鄙人到现在都没有怎么使用过内部类,对内部类也只是略知一二). 第一次见面 内部类我们从外面 ...

  7. sybase参数调整

  8. rman的使用

    下面是两种连接方式[oracle@oracle3A ~]$ rman target/ Recovery Manager: Release 11.2.0.1.0 - Production on Mon ...

  9. linux包之sysstat之sar命令

    要启动SAR,必须通过cron工具以周期性的间隔启动.安装sysstat包后,默认创建一个/etc/cron.d/sysstat文件,其默认内容为:# run system activity acco ...

  10. PHP stdClass Object转array

    用json传过来的数组并不是标准的array,所以需要用这个函数进行转换. function object_array($array){   if(is_object($array))   {    ...