zoj 2107&&hdu 1007最近点对问题
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1107
Quoit Design
Time Limit: 5 Seconds Memory Limit: 32768 KB
Have you ever played quoit in a playground? Quoit is a game in which flat rings are pitched at some toys, with all the toys encircled awarded.
In the field of Cyberground, the position of each toy is fixed, and the ring is carefully designed so it can only encircle one toy at a time. On the other hand, to make the game look more attractive, the ring is designed to have the largest radius. Given a configuration of the field, you are supposed to find the radius of such a ring.
Assume that all the toys are points on a plane. A point is encircled by the ring if the distance between the point and the center of the ring is strictly less than the radius of the ring. If two toys are placed at the same point, the radius of the ring is considered to be 0.
Input
The input consists of several test cases. For each case, the first line contains an integer N (2 <= N <= 100,000), the total number of toys in the field. Then N lines follow, each contains a pair of (x, y) which are the coordinates of a toy. The input is terminated by N = 0.
Output
For each test case, print in one line the radius of the ring required by the Cyberground manager, accurate up to 2 decimal places.
Sample Input
2
0 0
1 1
2
1 1
1 1
3
-1.5 0
0 0
0 1.5
0
Sample Output
0.71
0.00
0.75
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
参考了模板写的,确实不是很懂
来源:http://blog.csdn.net/cxiaokai/article/details/6661005
参考资料:http://blog.csdn.net/lishuhuakai/article/details/9133961
http://blog.csdn.net/hackbuteer1/article/details/7482232
尚待理解
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
#include <math.h>
#define MAXX 100005
using namespace std; struct point
{
double x;
double y;
}p[MAXX],p1[MAXX],p2[MAXX]; bool cmpx(point a,point b)
{
return a.x < b.x;
}
bool cmpy(point a,point b)
{
return a.y < b.y;
}
double dis(point a,point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
double minn(double a,double b)
{
return a > b ? b : a;
}
double closest(int l,int r)
{
if(l+ == r)return dis(p1[l],p1[r]);
if(l+ == r)
return minn(dis(p1[l],p1[l+]),minn(dis(p1[l],p1[r]),dis(p1[l+],p1[r])));
int mid=(l+r)>>;
double ans=minn(closest(l,mid),closest(mid+,r));
int cn=;
for(int i=l; i<=r; i++)
{
if(p1[i].x>=p1[mid].x-ans&&p1[i].x<=p1[mid].x+ans)
{
p2[cn++]=p1[i];
}
}
sort(p2,p2+cn,cmpy);
for(int i=; i<cn; i++)
{
for(int j=i+; j<cn; j++)
{
if(p2[j].y-p2[i].y>=ans)
break;
ans=minn(ans,dis(p2[i],p2[j]));
}
}
return ans;
} int main()
{ int n;
while(scanf("%d",&n)!=EOF&&n)
{
for(int i=; i<n; i++)
{
scanf("%lf%lf",&p[i].x,&p[i].y);
p1[i]=p[i];
}
sort(p1,p1+n,cmpx);
double dist=closest(,n-);
printf("%.2lf\n",dist/);
}
return ;
}
zoj 2107&&hdu 1007最近点对问题的更多相关文章
- hdu 1007最近点对问题
先说下题意,很简单,给n个点的坐标,求距离最近的一对点之间距离的一半.第一行是一个数n表示有n个点,接下来n行是n个点的x坐标和y坐标,实数. 这个题目其实就是求最近点对的距离.主要思想就是分治.先把 ...
- hdu 1007 最近点对问题(Splay解法)
为什么要写这个题..经典啊,当然,别以为我用分治做的,不过主要思想还是那神奇的六个点共存(一个h*2h的矩形中最多能放下多少个点使得两两距离不超过h) 其实我是在这里看到的 http://commun ...
- HDU 1007 Quoit Design(二分+浮点数精度控制)
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- HDU 1007 Quoit Design(经典最近点对问题)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1007 Quoit Design Time Limit: 10000/5000 MS (Java/Oth ...
- HDU 1007 Quoit Design 平面内最近点对
http://acm.hdu.edu.cn/showproblem.php?pid=1007 上半年在人人上看到过这个题,当时就知道用分治但是没有仔细想... 今年多校又出了这个...于是学习了一下平 ...
- HDU 1007:Quoit Design(分治求最近点对)
http://acm.hdu.edu.cn/showproblem.php?pid=1007 题意:平面上有n个点,问最近的两个点之间的距离的一半是多少. 思路:用分治做.把整体分为左右两个部分,那么 ...
- HDU 1007(套圈 最近点对距离)
题意是求出所给各点中最近点对的距离的一半(背景忽略). 用分治的思想,先根据各点的横坐标进行排序,以中间的点为界,分别求出左边点集的最小距离和右边点集的最小距离,然后开始合并,分别求左右点集中各点与中 ...
- hdu 1007 Quoit Design(分治法求最近点对)
大致题意:给N个点,求最近点对的距离 d :输出:r = d/2. // Time 2093 ms; Memory 1812 K #include<iostream> #include&l ...
- HDU 1007 Quoit Design(计算几何の最近点对)
Problem Description Have you ever played quoit in a playground? Quoit is a game in which flat rings ...
随机推荐
- Delphi 线程同步技术(转)
上次跟大家分享了线程的标准代码,其实在线程的使用中最重要的是线程的同步问题,如果你在使用线程后,发现你的界面经常被卡死,或者无法显示出来,显示混乱,你的使用的变量值老是不按预想的变化,结果往往出乎意料 ...
- oracle 数据泵 详解
导出数据 1)按用户导 expdp scott/tiger@orcl schemas=scott dumpfile=expdp.dmp DIRECTORY=dir logfile=expdp.log ...
- Android的startActivityForResult()与onActivityResult()与setResult()参数分析,activity带参数的返回
一.使用场景 在一个主界面(主Activity)通过意图跳转至多个不同子Activity上去,当子模块的代码执行完毕后再次返回主页面,将子activity中得到的数据显示在主界面/完成的数据交给主Ac ...
- Dijkstra 算法、Kruskal 算法、Prim算法、floyd算法
1.dijkstra算法 算最短路径的,算法解决的是有向图中单个源点到其他顶点的最短路径问题. 初始化n*n的数组. 2.kruskal算法 算最小生成树的,按权值加入 3.Prim算法 类似dijk ...
- javascript,jquery代码规范
jquery代码规范 Coding Standards & Best Practices 中文翻译版:jquery编程的标准写法和最佳实践 javascript代码规范 JavaScript编 ...
- SQLServer学习笔记<>.基础知识,一些基本命令,单表查询(null top用法,with ties附加属性,over开窗函数),排名函数
Sqlserver基础知识 (1)创建数据库 创建数据库有两种方式,手动创建和编写sql脚本创建,在这里我采用脚本的方式创建一个名称为TSQLFundamentals2008的数据库.脚本如下: ...
- PHP开发异步高性能的MySQL代理服务器
ySQL数据库对每个客户端连接都会分配一个线程,所以连接非常宝贵.开发一个异步的MySQL代理服务器,PHP应用服务器可以长连接到这台Server,既减轻MYSQL的连接压力,又使PHP保持长连接减少 ...
- 工具类 dp转px 获取图片实际尺寸 获取屏幕尺寸
dp转px public class Dp2pxUtils { public static int Dp2Px(Context context, float dp) { final float sca ...
- JDBC批量Insert深度优化(有事务)
环境: MySQL 5.1 RedHat Linux AS 5 JavaSE 1.5 DbConnectionBroker 微型数据库连接池 测试的方案: 执行10万次Insert语句,使用不同方 ...
- Humble Numbers
Humble Numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9988 Accepted: 4665 Descri ...