HDU(2485),最小割最大流
题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=2485
Destroying the bus stations
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2651 Accepted Submission(s): 891
is one of the greatest spies in his country. Now he’s trying to
complete an “impossible” mission ----- to make it slow for the army of
City Colugu to reach the airport. City Colugu has n bus stations and m
roads. Each road connects two bus stations directly, and all roads are
one way streets. In order to keep the air clean, the government bans all
military vehicles. So the army must take buses to go to the airport.
There may be more than one road between two bus stations. If a bus
station is destroyed, all roads connecting that station will become no
use. What’s Gabiluso needs to do is destroying some bus stations to make
the army can’t get to the airport in k minutes. It takes exactly one
minute for a bus to pass any road. All bus stations are numbered from 1
to n. The No.1 bus station is in the barrack and the No. n station is in
the airport. The army always set out from the No. 1 station.
No.1
station and No. n station can’t be destroyed because of the heavy guard.
Of course there is no road from No.1 station to No. n station.
Please help Gabiluso to calculate the minimum number of bus stations he must destroy to complete his mission.
For each test case:
The first line contains 3 integers, n, m and k. (0< n <=50, 0< m<=4000, 0 < k < 1000)
Then
m lines follows. Each line contains 2 integers, s and f, indicating
that there is a road from station No. s to station No. f.
1 3
3 4
4 5
1 2
2 5
1 4
4 5
0 0 0
给定n个点, m条有向边 ,k
下面m条有向边
问删最少几个点使得1-n的最短路>k
分析:
#include <iostream>
#include <stdio.h>
#include <cstring>
#include <vector>
#include <queue>
#define INF 0x3f3f3f3f
using namespace std;
const int maxn = + ;
int k; struct Edge
{
int from,to,cap,flow,cost;
Edge() {}
Edge(int a,int b,int c,int d,int e):from(a),to(b),cap(c),flow(d),cost(e) {}
}; struct MCMF
{
int n,m,s,t;
vector<Edge> edges;
vector<int> g[maxn];
int inq[maxn];
int d[maxn];
int p[maxn];
int a[maxn]; void init(int n)
{
this->n =n;
for(int i=; i<n; i++)g[i].clear();
edges.clear();
}
void addedge(int from,int to,int cap,int cost)
{
Edge e1= Edge(from,to,cap,,cost), e2= Edge(to,from,,,-cost);
edges.push_back(e1);
edges.push_back(e2);
m=edges.size();
g[from].push_back(m-);
g[to].push_back(m-);
}
bool spfa(int s,int t, int & flow,int & cost)
{
for(int i=; i<n; i++)
d[i]=INF;
memset(inq,,sizeof(inq));
d[s]=;
inq[s]=;
p[s]=;
a[s]=INF;
queue<int>q;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
inq[u]=;
for(int i=; i<g[u].size(); i++)
{
Edge & e = edges[g[u][i]];
if(e.cap>e.flow && d[e.to]>d[u]+e.cost)
{
d[e.to]=d[u]+e.cost;
p[e.to]=g[u][i];
a[e.to]=min(a[u],e.cap-e.flow);
if(!inq[e.to])
{
q.push(e.to);
inq[e.to]=;
}
}
}
}
if(d[t]>k)
return false;
if(d[t]==INF)
return false; flow+=a[t];
cost+=a[t]*d[t];
for(int u=t; u!=s; u=edges[p[u]].from)
{
edges[p[u]].flow +=a[t];
edges[p[u]^].flow-=a[t];
}
return true;
} int MincostMaxflow(int s,int t)
{
int flow=,cost =;
while(spfa(s,t,flow,cost));
return flow;
}
} sol; int main()
{
freopen("input.txt","r",stdin);
int n,m;
while(scanf("%d%d%d",&n,&m,&k))
{
int s = ,t = *n+;
if(n==&&m==&&k==) break;
int u,v;
sol.init(n*+);
for(int i=; i<=n; i++)
sol.addedge(i+n,i,,); sol.addedge(,+n,INF,);
sol.addedge(n,*n,INF,);
sol.addedge(,,INF,);
sol.addedge(*n,t,INF,);
for(int i=; i<m; i++)
{
scanf("%d%d",&u,&v);
sol.addedge(u,v+n,INF,);
}
printf("%d\n",sol.MincostMaxflow(s,t));
}
return ;
}
HDU(2485),最小割最大流的更多相关文章
- hdu 2485(最小费用最大流)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2485 思路:题目的意思是删除最少的点使1,n的最短路大于k.将点转化为边,容量为1,费用为0,然后就是 ...
- hdu4289 最小割最大流 (拆点最大流)
最小割最大流定理:(参考刘汝佳p369)增广路算法结束时,令已标号结点(a[u]>0的结点)集合为S,其他结点集合为T=V-S,则(S,T)是图的s-t最小割. Problem Descript ...
- 【BZOJ-1797】Mincut 最小割 最大流 + Tarjan + 缩点
1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1685 Solved: 724[Submit] ...
- BZOJ-1001 狼抓兔子 (最小割-最大流)平面图转对偶图+SPFA
1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MB Submit: 14686 Solved: 3513 [Submit][ ...
- hdu1569 方格取数(2) 最大点权独立集=总权和-最小点权覆盖集 (最小点权覆盖集=最小割=最大流)
/** 转自:http://blog.csdn.net/u011498819/article/details/20772147 题目:hdu1569 方格取数(2) 链接:https://vjudge ...
- BZOJ1001:狼抓兔子(最小割最大流+vector模板)
1001: [BeiJing2006]狼抓兔子 Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨, ...
- HDU1565 方格取数(1) —— 状压DP or 插头DP(轮廓线更新) or 二分图点带权最大独立集(最小割最大流)
题目链接:https://vjudge.net/problem/HDU-1565 方格取数(1) Time Limit: 10000/5000 MS (Java/Others) Memory L ...
- hdu 3691最小割将一个图分成两部分
转载地址:http://blog.csdn.net/xdu_truth/article/details/8104721 题意:题给出一个无向图和一个源点,让你求从这个点出发到某个点最大流的最小值.由最 ...
- 最小割最大流定理&残量网络的性质
最小割最大流定理的内容: 对于一个网络流图 $G=(V,E)$,其中有源点和汇点,那么下面三个条件是等价的: 流$f$是图$G$的最大流 残量网络$G_f$不存在增广路 对于$G$的某一个割$(S,T ...
- Destroying The Graph 最小点权集--最小割--最大流
Destroying The Graph 构图思路: 1.将所有顶点v拆成两个点, v1,v2 2.源点S与v1连边,容量为 W- 3.v2与汇点连边,容量为 W+ 4.对图中原边( a, b ), ...
随机推荐
- 在自定义的UINavigationController中设置背景图片
//这个方法中设置 + (void)initialize { UINavigationBar *bar = [UINavigationBar appearance]; [bar setBackgrou ...
- JavaScript内的类型转换
JavaScript内的类型转换 1.分为自动转换和强制转换,我们一般用强制转换.其他类型转换为整数是parseInt();其他类型转化为小数parseFloat(); 2.判断是不是一个合法数字 ...
- 树形DP(统计直径的条数 HDU3534)
分析:首先树形dp(dfs计算出每个点为根节点的子树的最长距离和次长距离),然后找出L=dis[u][0]+dis[u][1]最长的那个点u,然后在以u为根节点dfs,统计长度为L的条数:具体做法:把 ...
- nyist 599 奋斗的小蜗牛
http://acm.nyist.net/JudgeOnline/problem.php?pid=599 奋斗的小蜗牛 时间限制:1000 ms | 内存限制:65535 KB 难度:1 描述 ...
- [原创]java WEB学习笔记78:Hibernate学习之路---session概述,session缓存(hibernate 一级缓存),数据库的隔离级别,在 MySql 中设置隔离级别,在 Hibernate 中设置隔离级别
本博客的目的:①总结自己的学习过程,相当于学习笔记 ②将自己的经验分享给大家,相互学习,互相交流,不可商用 内容难免出现问题,欢迎指正,交流,探讨,可以留言,也可以通过以下方式联系. 本人互联网技术爱 ...
- run()和star()区别
run()和star()区别 run()-->只是thread类的一个普通方法调用 star()-->用来启动线程,实现多线程运行
- ol,ul,dl,table标签的基本语法
ol,ul,dl,table标签的基本语法 有序列表: 无序列表: 自定义列表: <ol> <ul> < ...
- 反射认识_06_ArrayList_HashSet区别
包01: package ReflectionCollection; public class ReflectionConstructorPoint { private int x; public i ...
- jquery stop
stop():停止当前活动的动画,但允许已排队的动画向前执行 stop(true):停止当前活动的动画,并清空动画队列:因此元素上的所有动画都会停止 stop(true,true):会立即完成当前活动 ...
- FM000
SQL> select To_char(1,'000') from dual; TO_C----001 注意最左边有一个空格 SQL> select To_char(1,'FM000') ...