geeksforgeeks@ Minimum Points To Reach Destination (Dynamic Programming)
http://www.practice.geeksforgeeks.org/problem-page.php?pid=91
Minimum Points To Reach Destination
Given a grid with each cell consisting of positive, negative or no points i.e, zero points. We can move across a cell only if we have positive points ( > 0 ). Whenever we pass through a cell, points in that cell are added to our overall points. We need to find minimum initial points to reach cell (m-1, n-1) from (0, 0) by following these certain set of rules :
1.From a cell (i, j) we can move to (i+1, j) or (i, j+1).
2.We cannot move from (i, j) if your overall points at (i, j) is <= 0.
3.We have to reach at (n-1, m-1) with minimum positive points i.e., > 0.
Example:
Input: points[m][n] = { {-2, -3, 3},
{-5, -10, 1},
{10, 30, -5}
};
Output: 7
Explanation:
7 is the minimum value to reach destination with
positive throughout the path. Below is the path.
(0,0) -> (0,1) -> (0,2) -> (1, 2) -> (2, 2)
We start from (0, 0) with 7, we reach(0, 1)
with 5, (0, 2) with 2, (1, 2) with 5, (2, 2)
with and finally we have 1 point (we needed
greater than 0 points at the end).
Input:
The first line contains an integer 'T' denoting the total number of test cases.
In each test cases, the first line contains two integer 'R' and 'C' denoting the number of rows and column of array.
The second line contains the value of the array i.e the grid, in a single line separated by spaces in row major order.
Output:
Print the minimum initial points to reach the bottom right most cell in a separate line.
Constraints:
1 ≤ T ≤ 30
1 ≤ R,C ≤ 10
-30 ≤ A[R][C] ≤ 30
Example:
Input:
1
3 3
-2 -3 3 -5 -10 1 10 30 -5
Output:
7
import java.util.*;
import java.lang.*;
import java.io.*; class GFG { public static int func(int[][] arr) { int r = arr.length, c = arr[0].length;
int[][] dp = new int[r][c]; dp[r-1][c-1] = (1 + arr[r-1][c-1] <= 0)? 1: (1 + arr[r-1][c-1]);
for(int j=c-2; j>=0; --j) {
dp[r-1][j] = (dp[r-1][j+1] + arr[r-1][j] <= 0)? 1: (dp[r-1][j+1] + arr[r-1][j]);
} for(int i=r-2; i>=0; --i) {
dp[i][c-1] = (dp[i+1][c-1] + arr[i][c-1] <= 0)? 1: (dp[i+1][c-1] + arr[i][c-1]);
} for(int i=r-2; i>=0; --i) {
for(int j=c-2; j>=0; --j) {
int mmin = Integer.MAX_VALUE;
if(dp[i+1][j] + arr[i][j] <= 0 || dp[i][j+1] + arr[i][j] <= 0) mmin = 1;
else mmin = Math.min(mmin, Math.min(dp[i+1][j], dp[i][j+1]) + arr[i][j]);
dp[i][j] = mmin;
}
} return dp[0][0];
} public static void main (String[] args) {
Scanner in = new Scanner(System.in);
int times = in.nextInt(); while(times > 0) {
--times; int r = in.nextInt(), c = in.nextInt();
int[][] arr = new int[r][c];
for(int i=0; i<r; ++i) {
for(int j=0; j<c; ++j) {
arr[i][j] = in.nextInt();
arr[i][j] *= -1;
}
} System.out.println(func(arr));
}
}
}
geeksforgeeks@ Minimum Points To Reach Destination (Dynamic Programming)的更多相关文章
- [LeetCode] 64. Minimum Path Sum_Medium tag: Dynamic Programming
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...
- [LeetCode] 45. Jump Game II_ Hard tag: Dynamic Programming
Given an array of non-negative integers, you are initially positioned at the first index of the arra ...
- [Optimization] Advanced Dynamic programming
这里主要是较为详细地理解动态规划的思想,思考一些高质量的案例,同时也响应如下这么一句口号: “迭代(regression)是人,递归(recursion)是神!” Video series for D ...
- Algo: Dynamic programming
Copyright © 1900-2016, NORYES, All Rights Reserved. http://www.cnblogs.com/noryes/ 欢迎转载,请保留此版权声明. -- ...
- 算法导论学习-Dynamic Programming
转载自:http://blog.csdn.net/speedme/article/details/24231197 1. 什么是动态规划 ------------------------------- ...
- Dynamic Programming: From novice to advanced
作者:Dumitru 出处:http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=dynProg An impo ...
- HDU-4972 A simple dynamic programming problem
http://acm.hdu.edu.cn/showproblem.php?pid=4972 ++和+1还是有区别的,不可大意. A simple dynamic programming proble ...
- 70. Climbing Stairs(easy, 号称 Dynamic Programming 天下第一题)
You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...
- [LeetCode] 132. Palindrome Partitioning II_ Hard tag: Dynamic Programming
Given a string s, partition s such that every substring of the partition is a palindrome. Return the ...
随机推荐
- [原]poj-3009-Curling 2.0-dfs
题目太长就不贴了,题意: 上下左右四联通块,2表示起点,3表示终点,1为block,0为空地,每动一次冰壶,冰壶就会向推动的方向一直移动,直到碰到block或出界,如果碰到block就在block前停 ...
- 【转】Android 使用ORMLite 操作数据库
Android 使用ORMLite 操作数据库 用过ssh,s2sh的肯定不会陌生 ,应该一学就会 第一步: 下载ormlite-android-4.41.jar和ormlite-core-4.4 ...
- JAVA中封装JSONUtils工具类及使用
在JAVA中用json-lib-2.3-jdk15.jar包中提供了JSONObject和JSONArray基类,用于JSON的序列化和反序列化的操作.但是我们更习惯将其进一步封装,达到更好的重用. ...
- JSON 之 SuperObject(4): 增、删、改
unit Unit1; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, For ...
- UVa 1594 (Floyd判圈) Ducci Sequence
大白书上P42那个计算器的题目就用到了这个办法,Floyd判圈法. 当然,用STL里的map也是可以的. #include <cstdio> #include <cmath> ...
- 51nod1239 欧拉函数之和
跟1244差不多. //由于(x+1)没有先mod一下一直WA三个点我... //由于(x+1)没有先mod一下一直WA三个点我... #include<cstdio> #include& ...
- BZOJ 1935 园丁的烦恼
离线,BIT. #include<iostream> #include<cstdio> #include<cstring> #include<algorith ...
- HDU 5348 MZL's endless loop 给边定向(欧拉回路,最大流)
题意: 给一个所有你可能想得到的奇葩无向图,要求给每条边定向,使得每个点的入度与出度之差不超过1.输出1表示定向往右,输出0表示定向往左. 思路: 网络流也是可以解决的!!应该挺简单理解的.但是由于复 ...
- 【英语】Bingo口语笔记(63) - 一个单词的多种发音
- vector & array
private static const NUM_LOOPS:int = 15; public function VectorTest():void { var vector:Vector.<i ...