geeksforgeeks@ Minimum Points To Reach Destination (Dynamic Programming)
http://www.practice.geeksforgeeks.org/problem-page.php?pid=91
Minimum Points To Reach Destination
Given a grid with each cell consisting of positive, negative or no points i.e, zero points. We can move across a cell only if we have positive points ( > 0 ). Whenever we pass through a cell, points in that cell are added to our overall points. We need to find minimum initial points to reach cell (m-1, n-1) from (0, 0) by following these certain set of rules :
1.From a cell (i, j) we can move to (i+1, j) or (i, j+1).
2.We cannot move from (i, j) if your overall points at (i, j) is <= 0.
3.We have to reach at (n-1, m-1) with minimum positive points i.e., > 0.
Example:
Input: points[m][n] = { {-2, -3, 3},
{-5, -10, 1},
{10, 30, -5}
};
Output: 7
Explanation:
7 is the minimum value to reach destination with
positive throughout the path. Below is the path.
(0,0) -> (0,1) -> (0,2) -> (1, 2) -> (2, 2)
We start from (0, 0) with 7, we reach(0, 1)
with 5, (0, 2) with 2, (1, 2) with 5, (2, 2)
with and finally we have 1 point (we needed
greater than 0 points at the end).
Input:
The first line contains an integer 'T' denoting the total number of test cases.
In each test cases, the first line contains two integer 'R' and 'C' denoting the number of rows and column of array.
The second line contains the value of the array i.e the grid, in a single line separated by spaces in row major order.
Output:
Print the minimum initial points to reach the bottom right most cell in a separate line.
Constraints:
1 ≤ T ≤ 30
1 ≤ R,C ≤ 10
-30 ≤ A[R][C] ≤ 30
Example:
Input:
1
3 3
-2 -3 3 -5 -10 1 10 30 -5
Output:
7
import java.util.*;
import java.lang.*;
import java.io.*; class GFG { public static int func(int[][] arr) { int r = arr.length, c = arr[0].length;
int[][] dp = new int[r][c]; dp[r-1][c-1] = (1 + arr[r-1][c-1] <= 0)? 1: (1 + arr[r-1][c-1]);
for(int j=c-2; j>=0; --j) {
dp[r-1][j] = (dp[r-1][j+1] + arr[r-1][j] <= 0)? 1: (dp[r-1][j+1] + arr[r-1][j]);
} for(int i=r-2; i>=0; --i) {
dp[i][c-1] = (dp[i+1][c-1] + arr[i][c-1] <= 0)? 1: (dp[i+1][c-1] + arr[i][c-1]);
} for(int i=r-2; i>=0; --i) {
for(int j=c-2; j>=0; --j) {
int mmin = Integer.MAX_VALUE;
if(dp[i+1][j] + arr[i][j] <= 0 || dp[i][j+1] + arr[i][j] <= 0) mmin = 1;
else mmin = Math.min(mmin, Math.min(dp[i+1][j], dp[i][j+1]) + arr[i][j]);
dp[i][j] = mmin;
}
} return dp[0][0];
} public static void main (String[] args) {
Scanner in = new Scanner(System.in);
int times = in.nextInt(); while(times > 0) {
--times; int r = in.nextInt(), c = in.nextInt();
int[][] arr = new int[r][c];
for(int i=0; i<r; ++i) {
for(int j=0; j<c; ++j) {
arr[i][j] = in.nextInt();
arr[i][j] *= -1;
}
} System.out.println(func(arr));
}
}
}
geeksforgeeks@ Minimum Points To Reach Destination (Dynamic Programming)的更多相关文章
- [LeetCode] 64. Minimum Path Sum_Medium tag: Dynamic Programming
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...
- [LeetCode] 45. Jump Game II_ Hard tag: Dynamic Programming
Given an array of non-negative integers, you are initially positioned at the first index of the arra ...
- [Optimization] Advanced Dynamic programming
这里主要是较为详细地理解动态规划的思想,思考一些高质量的案例,同时也响应如下这么一句口号: “迭代(regression)是人,递归(recursion)是神!” Video series for D ...
- Algo: Dynamic programming
Copyright © 1900-2016, NORYES, All Rights Reserved. http://www.cnblogs.com/noryes/ 欢迎转载,请保留此版权声明. -- ...
- 算法导论学习-Dynamic Programming
转载自:http://blog.csdn.net/speedme/article/details/24231197 1. 什么是动态规划 ------------------------------- ...
- Dynamic Programming: From novice to advanced
作者:Dumitru 出处:http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=dynProg An impo ...
- HDU-4972 A simple dynamic programming problem
http://acm.hdu.edu.cn/showproblem.php?pid=4972 ++和+1还是有区别的,不可大意. A simple dynamic programming proble ...
- 70. Climbing Stairs(easy, 号称 Dynamic Programming 天下第一题)
You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...
- [LeetCode] 132. Palindrome Partitioning II_ Hard tag: Dynamic Programming
Given a string s, partition s such that every substring of the partition is a palindrome. Return the ...
随机推荐
- 《OD大数据实战》HDFS入门实例
一.环境搭建 1. 下载安装配置 <OD大数据实战>Hadoop伪分布式环境搭建 2. Hadoop配置信息 1)${HADOOP_HOME}/libexec:存储hadoop的默认环境 ...
- xmlWriter 以UTF-8格式写xml问题
dom4j中的XMLWriter提供以下几种构造方法: XMLWriter() XMLWriter(OutputFormat format) XMLWriter(OutputStream out) X ...
- 每个极客都应该知道的Linux技巧
每个极客都应该知道的Linux技巧 2014/03/07 | 分类: IT技术 | 0 条评论 | 标签: LINUX 分享到:18 本文由 伯乐在线 - 欣仔 翻译自 TuxRadar Linux. ...
- spring tx:advice 和 aop:config 配置事务
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...
- jquery总结(1)
jquery是一种js对象.里面封装了一些方法,但是jquery对象不能直接使用js方法,js对象不能直接使用jquery方法. jquery对象类似于js对象的集合,就是存在形式是以特殊数组的形式: ...
- php socket编程参考资料
WebSocket API https://msdn.microsoft.com/library/hh673567 http://www.jnecw.com/p/1523 经朋友推荐去一家手游公司面试 ...
- Windows Store APP- C# to get IP Address
using Windows.Networking.Connectivity; public String GetIPString() { String ipString = String.Empty; ...
- 【自动化测试】PO思路
http://blog.csdn.net/liubofengpython/article/details/7720078
- MongoDB数据库和集合的状态信息
查看数据库统计信息:db.stats() > use testswitched to db test> db.stats(){ "db" : " ...
- Android布局文件夹引起的问题
Android 运行到setContentView(R.layout.splash); 总是出现如下的错误: java.lang.RuntimeException: Unable to start a ...