geeksforgeeks@ Minimum Points To Reach Destination (Dynamic Programming)
http://www.practice.geeksforgeeks.org/problem-page.php?pid=91
Minimum Points To Reach Destination
Given a grid with each cell consisting of positive, negative or no points i.e, zero points. We can move across a cell only if we have positive points ( > 0 ). Whenever we pass through a cell, points in that cell are added to our overall points. We need to find minimum initial points to reach cell (m-1, n-1) from (0, 0) by following these certain set of rules :
1.From a cell (i, j) we can move to (i+1, j) or (i, j+1).
2.We cannot move from (i, j) if your overall points at (i, j) is <= 0.
3.We have to reach at (n-1, m-1) with minimum positive points i.e., > 0.
Example:
Input: points[m][n] = { {-2, -3, 3},
{-5, -10, 1},
{10, 30, -5}
};
Output: 7
Explanation:
7 is the minimum value to reach destination with
positive throughout the path. Below is the path.
(0,0) -> (0,1) -> (0,2) -> (1, 2) -> (2, 2)
We start from (0, 0) with 7, we reach(0, 1)
with 5, (0, 2) with 2, (1, 2) with 5, (2, 2)
with and finally we have 1 point (we needed
greater than 0 points at the end).
Input:
The first line contains an integer 'T' denoting the total number of test cases.
In each test cases, the first line contains two integer 'R' and 'C' denoting the number of rows and column of array.
The second line contains the value of the array i.e the grid, in a single line separated by spaces in row major order.
Output:
Print the minimum initial points to reach the bottom right most cell in a separate line.
Constraints:
1 ≤ T ≤ 30
1 ≤ R,C ≤ 10
-30 ≤ A[R][C] ≤ 30
Example:
Input:
1
3 3
-2 -3 3 -5 -10 1 10 30 -5
Output:
7
import java.util.*;
import java.lang.*;
import java.io.*; class GFG { public static int func(int[][] arr) { int r = arr.length, c = arr[0].length;
int[][] dp = new int[r][c]; dp[r-1][c-1] = (1 + arr[r-1][c-1] <= 0)? 1: (1 + arr[r-1][c-1]);
for(int j=c-2; j>=0; --j) {
dp[r-1][j] = (dp[r-1][j+1] + arr[r-1][j] <= 0)? 1: (dp[r-1][j+1] + arr[r-1][j]);
} for(int i=r-2; i>=0; --i) {
dp[i][c-1] = (dp[i+1][c-1] + arr[i][c-1] <= 0)? 1: (dp[i+1][c-1] + arr[i][c-1]);
} for(int i=r-2; i>=0; --i) {
for(int j=c-2; j>=0; --j) {
int mmin = Integer.MAX_VALUE;
if(dp[i+1][j] + arr[i][j] <= 0 || dp[i][j+1] + arr[i][j] <= 0) mmin = 1;
else mmin = Math.min(mmin, Math.min(dp[i+1][j], dp[i][j+1]) + arr[i][j]);
dp[i][j] = mmin;
}
} return dp[0][0];
} public static void main (String[] args) {
Scanner in = new Scanner(System.in);
int times = in.nextInt(); while(times > 0) {
--times; int r = in.nextInt(), c = in.nextInt();
int[][] arr = new int[r][c];
for(int i=0; i<r; ++i) {
for(int j=0; j<c; ++j) {
arr[i][j] = in.nextInt();
arr[i][j] *= -1;
}
} System.out.println(func(arr));
}
}
}
geeksforgeeks@ Minimum Points To Reach Destination (Dynamic Programming)的更多相关文章
- [LeetCode] 64. Minimum Path Sum_Medium tag: Dynamic Programming
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...
- [LeetCode] 45. Jump Game II_ Hard tag: Dynamic Programming
Given an array of non-negative integers, you are initially positioned at the first index of the arra ...
- [Optimization] Advanced Dynamic programming
这里主要是较为详细地理解动态规划的思想,思考一些高质量的案例,同时也响应如下这么一句口号: “迭代(regression)是人,递归(recursion)是神!” Video series for D ...
- Algo: Dynamic programming
Copyright © 1900-2016, NORYES, All Rights Reserved. http://www.cnblogs.com/noryes/ 欢迎转载,请保留此版权声明. -- ...
- 算法导论学习-Dynamic Programming
转载自:http://blog.csdn.net/speedme/article/details/24231197 1. 什么是动态规划 ------------------------------- ...
- Dynamic Programming: From novice to advanced
作者:Dumitru 出处:http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=dynProg An impo ...
- HDU-4972 A simple dynamic programming problem
http://acm.hdu.edu.cn/showproblem.php?pid=4972 ++和+1还是有区别的,不可大意. A simple dynamic programming proble ...
- 70. Climbing Stairs(easy, 号称 Dynamic Programming 天下第一题)
You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...
- [LeetCode] 132. Palindrome Partitioning II_ Hard tag: Dynamic Programming
Given a string s, partition s such that every substring of the partition is a palindrome. Return the ...
随机推荐
- POJ 3494 Largest Submatrix of All 1’s(最大全1子矩阵)
题目链接:http://poj.org/problem?id=3494 题意:给出一个01的矩阵,找出一个面积最大的全1矩阵. 思路:用h[i][j]表示从位置(i,j)向上连续1的最大长度.之后枚举 ...
- datagridview中combobox类型的cell选中一个下拉列表之后,立即生效的事件
public event EventHandler CurrentCellDirtyStateChanged 当单元格的内容已更改,但更改尚未保存时,该单元格将标记为已修改. 此事件通常会在以下情况下 ...
- [Topcoder]ZigZag(dp)
题目链接:https://community.topcoder.com/stat?c=problem_statement&pm=1259&rd=4493 题意:给一串数字,求出最长的波 ...
- Lepus经历收获杂谈(一)——confirm features的小工具
------记Project of AIM_PointCloudTrainingManager------ ---------------------------------------------- ...
- HTML & CSS 小总结
1. web 主机代理商 web hosting company, 让他们的服务器为你的页面服务2. 选择网站名字 例如: www.1234.com3. 寻找 把文件从电脑传到主机的途径4. 把新网站 ...
- MFC弹出菜单隐藏解决
http://social.msdn.microsoft.com/Forums/en-US/5482103e-272b-4c9f-bac4-be15f14782bd/cmfcmenubar-remov ...
- jQuery 停止动画、jQuery Callback 函数、jQuery - Chaining
一.jQuery 停止动画 jQuery stop() 方法用于在动画或效果完成前对它们进行停止. stop() 方法适用于所有 jQuery 效果函数,包括滑动.淡入淡出和自定义动画. $(sele ...
- R语言实现数据集某一列的频数统计——with和table
with(priority.train, table(From.EMail)) 统计priority.train中From.EMail的频数
- 设置app的状态栏样式
http://www.jianshu.com/p/9f7f3fa624e7 http://cocoa.venj.me/blog/view-controller-based-status-bar-sty ...
- HDU 4006 The kth great number【优先队列】
题意:输入n行,k,如果一行以I开头,那么插入x,如果以Q开头,则输出第k大的数 用优先队列来做,将队列的大小维护在k这么大,然后每次取队首元素就可以了 另外这个维护队列只有k个元素的时候需要注意一下 ...