http://www.practice.geeksforgeeks.org/problem-page.php?pid=91

Minimum Points To Reach Destination

Given a grid with each cell consisting of positive, negative or no points i.e, zero points. We can move across a cell only if we have positive points ( > 0 ). Whenever we pass through a cell, points in that cell are added to our overall points. We need to find minimum initial points to reach cell (m-1, n-1) from (0, 0) by following these certain set of rules :
 
1.From a cell (i, j) we can move to (i+1, j) or (i, j+1).
2.We cannot move from (i, j) if your overall points at (i, j) is <= 0.
3.We have to reach at (n-1, m-1) with minimum positive points i.e., > 0.
 
Example:
 
Input: points[m][n] = { {-2, -3,   3},  
                        {-5, -10,  1},  
                        {10,  30, -5}  
                      };
Output: 7
Explanation:  
7 is the minimum value to reach destination with  
positive throughout the path. Below is the path.
 
(0,0) -> (0,1) -> (0,2) -> (1, 2) -> (2, 2)
 
We start from (0, 0) with 7, we reach(0, 1)  
with 5, (0, 2) with 2, (1, 2) with 5, (2, 2)
with and finally we have 1 point (we needed  
greater than 0 points at the end).

Input:

The first line contains an integer 'T' denoting the total number of test cases.
In each test cases, the first line contains two integer 'R' and 'C' denoting the number of rows and column of array.  
The second line contains the value of the array i.e the grid, in a single line separated by spaces in row major order.

Output:

Print the minimum initial points to reach the bottom right most cell in a separate line.

Constraints:

1 ≤ T ≤ 30
1 ≤ R,C ≤ 10
-30 ≤ A[R][C] ≤ 30

Example:

Input:
1
3 3
-2 -3 3 -5 -10 1 10 30 -5
Output:
7

import java.util.*;
import java.lang.*;
import java.io.*; class GFG { public static int func(int[][] arr) { int r = arr.length, c = arr[0].length;
int[][] dp = new int[r][c]; dp[r-1][c-1] = (1 + arr[r-1][c-1] <= 0)? 1: (1 + arr[r-1][c-1]);
for(int j=c-2; j>=0; --j) {
dp[r-1][j] = (dp[r-1][j+1] + arr[r-1][j] <= 0)? 1: (dp[r-1][j+1] + arr[r-1][j]);
} for(int i=r-2; i>=0; --i) {
dp[i][c-1] = (dp[i+1][c-1] + arr[i][c-1] <= 0)? 1: (dp[i+1][c-1] + arr[i][c-1]);
} for(int i=r-2; i>=0; --i) {
for(int j=c-2; j>=0; --j) {
int mmin = Integer.MAX_VALUE;
if(dp[i+1][j] + arr[i][j] <= 0 || dp[i][j+1] + arr[i][j] <= 0) mmin = 1;
else mmin = Math.min(mmin, Math.min(dp[i+1][j], dp[i][j+1]) + arr[i][j]);
dp[i][j] = mmin;
}
} return dp[0][0];
} public static void main (String[] args) {
Scanner in = new Scanner(System.in);
int times = in.nextInt(); while(times > 0) {
--times; int r = in.nextInt(), c = in.nextInt();
int[][] arr = new int[r][c];
for(int i=0; i<r; ++i) {
for(int j=0; j<c; ++j) {
arr[i][j] = in.nextInt();
arr[i][j] *= -1;
}
} System.out.println(func(arr));
}
}
}

geeksforgeeks@ Minimum Points To Reach Destination (Dynamic Programming)的更多相关文章

  1. [LeetCode] 64. Minimum Path Sum_Medium tag: Dynamic Programming

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...

  2. [LeetCode] 45. Jump Game II_ Hard tag: Dynamic Programming

    Given an array of non-negative integers, you are initially positioned at the first index of the arra ...

  3. [Optimization] Advanced Dynamic programming

    这里主要是较为详细地理解动态规划的思想,思考一些高质量的案例,同时也响应如下这么一句口号: “迭代(regression)是人,递归(recursion)是神!” Video series for D ...

  4. Algo: Dynamic programming

    Copyright © 1900-2016, NORYES, All Rights Reserved. http://www.cnblogs.com/noryes/ 欢迎转载,请保留此版权声明. -- ...

  5. 算法导论学习-Dynamic Programming

    转载自:http://blog.csdn.net/speedme/article/details/24231197 1. 什么是动态规划 ------------------------------- ...

  6. Dynamic Programming: From novice to advanced

    作者:Dumitru 出处:http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=dynProg An impo ...

  7. HDU-4972 A simple dynamic programming problem

    http://acm.hdu.edu.cn/showproblem.php?pid=4972 ++和+1还是有区别的,不可大意. A simple dynamic programming proble ...

  8. 70. Climbing Stairs(easy, 号称 Dynamic Programming 天下第一题)

    You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...

  9. [LeetCode] 132. Palindrome Partitioning II_ Hard tag: Dynamic Programming

    Given a string s, partition s such that every substring of the partition is a palindrome. Return the ...

随机推荐

  1. 《OD大数据实战》mac下安装nginx+php

    一.mac安装nginx + php + php-fpm  或apache + php 1. Mac 下 Nginx.MySQL.PHP-FPM 的安装配置 2. Mac下安装LNMP(Nginx+P ...

  2. hibernate学习笔记4---HQL、通用方法的抽取实现

    一.通用方法的抽取实现 由于hibernate中对增删改查的一切操作都是面向对象的,所以将增删改查抽取成通用方法,以满足不同的表的增删改查操作,简化jdbc代码. 具体例子如下: package cn ...

  3. mysql数据库导入外键约束问题

    在网站搬迁过程中,很重要一点是数据的迁移.你的数据库可能已经包含了一个设计良好的数据表集合,并且在网站运营过程中,产生了重要的数据.这时你必须做好包含数据表schema以及数据本身的迁移. 完成上述数 ...

  4. UIPikerView

    UIPikerView的属性 1.   numberOfComponents:返回UIPickerView当前的列数 NSInteger num = _pickerView.numberOfCompo ...

  5. HDU 5360 Hiking 登山 (优先队列,排序)

    题意: 有n个人可供邀请去hiking,但是他们很有个性,每个人都有个预期的人数上下限[Li,Ri],只有当前确定会去的人数在这个区间内他才肯去.一旦他答应了,无论人数怎样变更,他都不会反悔.问最多能 ...

  6. 【Python】Python重新学习

    <python基础教程(第二版)> http://www.cnblogs.com/fnng/category/454439.html 分片(后面取的是前一位) eg: >>&g ...

  7. 【解题报告】HDU -1142 A Walk Through the Forest

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1142 题目大意:Jimmy要从办公室走路回家,办公室在森林的一侧,家在另一侧,他每天要采取不一样的路线 ...

  8. Android下实现win8的按钮点击效果

    原理就是自定义一个imageButton,实现动画效果 demo源码下载地址:  请戳这里----------------> 关于回弹张力的效果扩展,可以参考Facebook的开源动画库rebo ...

  9. hive部署手册

    安装环境: 机器 只需要安装一台机器      操作系统:Ubuntu 11.04 64操作系统      hadoop:版本是1.0.2,安装在/usr/local/hadoop      sun ...

  10. svn log 不显示日志的问题

    在你配好了Xcode里的SourceControl之后提交代码回复代码都很方便,可是为什么在Xcode上提交的log,在svn下面显示不出来! 解决办法是:在命令行下,先 svn update 一下, ...