安装sequenza

bam文件要放在前面,否侧会-f命令可能识别错误

samtools mpileup a.bam -f hg19.fasta -Q 20 |gzip > normal.pileup.gz
samtools mpileup b.sorted.bam -f hg19.fasta -Q 20 |gzip > tumor.pileup.gz

··········································································································

将R语言里sequenza里的sequenza-utils.py复制到/usr/local/bin/下
运行:
#Generating a genome-wide GC content file

python sequenza-utils.py GC-windows -w 50 hg19.fasta |gzip > hg19.gc50Base.txt.gz

#Generate a seqz file

python sequenza-utils.py pileup2seqz -gc hg19.gc50Base.txt.gz -n normal.pileup.gz -t tumor.pileup.gz |gzip > out.seqz.gz

#Trim the seqz file

python sequenza-utils.py seqz-binning -w 50 -s out.seqz.gz | gzip > out_small.seqz.gz

············································································································
R
library(sequenza)
seqz.data <- read.seqz("out_small.seqz.gz") str(seqz.data, vec.len = 2)

gc.stats <- gc.sample.stats("out_small.seqz.gz")
str(gc.stats)
par(mfrow = c(1,2), cex = 1, las = 1, bty = 'l')
matplot(gc.stats$gc.values, gc.stats$raw,
type = 'b', col = 1, pch = c(1, 19, 1), lty = c(2, 1, 2),
xlab = 'GC content (%)', ylab = 'Uncorrected depth ratio')
legend('topright', legend = colnames(gc.stats$raw), pch = c(1, 19, 1))
hist2(seqz.data$depth.ratio, seqz.data$adjusted.ratio,
breaks = prettyLog, key = vkey, panel.first = abline(0, 1, lty = 2),
xlab = 'Uncorrected depth ratio', ylab = 'GC-adjusted depth ratio')

dev.off()
#可以生成RPlots.pdf文件
·······································································································

test <- sequenza.extract("out_small.seqz.gz",assembly = "hg19",chromosome.list=c((1:22),"X","Y","M"))

names(test)
chromosome.view(mut.tab = test$mutations[[1]], baf.windows = test$BAF[[1]], ratio.windows = test$ratio[[1]], min.N.ratio = 1, segments = test$segments[[1]], main = test$chromosomes[1])
CP.example <- sequenza.fit(test)

#导出结果
sequenza.results(sequenza.extract = test, cp.table = CP.example, sample.id="TEST",out.dir="TEST")

sequenza细胞纯度计算的更多相关文章

  1. 语音识别(LSTM+CTC)

    完整版请微信关注“大数据技术宅” 序言:语音识别作为人工智能领域重要研究方向,近几年发展迅猛,其中RNN的贡献尤为突出.RNN设计的目的就是让神经网络可以处理序列化的数据.本文笔者将陪同小伙伴们一块儿 ...

  2. lakala proportion轨迹分析代码

    /** * Created by lkl on 2017/12/7. */ import breeze.numerics.abs import org.apache.spark.sql.SQLCont ...

  3. LSTM理解

    简介 LSTM(Long short-term memory,长短期记忆)是一种特殊的RNN,主要是为了解决长序列训练过程中的梯度消失问题.以下先从RNN介绍. 简说RNN RNN(Recurrent ...

  4. [NLP]LSTM理解

    简介 LSTM(Long short-term memory,长短期记忆)是一种特殊的RNN,主要是为了解决长序列训练过程中的梯度消失问题.以下先从RNN介绍. 简说RNN RNN(Recurrent ...

  5. Vector-based navigation using grid-like representations in artificial agents

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Nature May 17, 2018 Received: 5 July 2017; Accepted: 3 April 2018;Pub ...

  6. 计算细胞数【BFS】

    问题描述 一矩形阵列由数字0到9组成,数字1到9代表细胞,细胞的定义为沿细胞数字上下左右还是细胞数字则为同一细胞,求给定矩形阵列的细胞个数. 输入格式 2行:第1行为两个整数 mm, nn, 代表矩阵 ...

  7. OpenJudge计算概论-异常细胞检测

    /*======================================================================== 异常细胞检测 总时间限制: 1000ms 内存限制 ...

  8. 【OpenCV】基于kmeans的细胞检测方法

    问题是这样的,有一幅经过二值化处理之后的图像,我们希望统计其中细胞的个数,和不同粘连情况的细胞个数,比如,下图中有1个细胞组成连通区域的,也有2个细胞组成连通区域的,也有更多个细胞组成连通区域的,我们 ...

  9. 颜色渐变的RGB计算

    均匀渐变 渐变(Gradient)是美学中一条重要的形式美法则,与其相对应的是突变.形状.大小.位置.方向.色彩等视觉因素都可以进行渐变.在色彩中,色相.明度.纯度也都可以产生渐变效果,并会表现出具有 ...

随机推荐

  1. java concurrency in practice读书笔记---ThreadLocal原理

    ThreadLocal这个类很强大,用处十分广泛,可以解决多线程之间共享变量问题,那么ThreadLocal的原理是什么样呢?源代码最能说明问题! public class ThreadLocal&l ...

  2. 程序员PC选购

    程序员PC选购[转载] http://www.cnblogs.com/legendtao/p/4631150.html 好马配上好鞍,自然事半功倍.一台好的PC能给你更好的工作娱乐体验~~(卧槽,感觉 ...

  3. ASP开发入门+实战电子书共50本 —下载目录

    小弟为大家整理50个ASP电子书籍,有入门,也有实战电子书,做成了一个下载目录,欢迎大家下载. 资源名称 资源地址 ASP.NET开发实战1200例_第I卷 http://down.51cto.com ...

  4. C++:FMC 错误

    1.generated debug assertion -- File: docsingl.cpp Line: 215 MFC程序vs2008编译通过,运行时出错,无法打开,提示f:\dd\xxxx的 ...

  5. MongoDB在windows自启动

    D:\mongodb\Server\3.0\bin>mongod --logpath D:\mongodb\log\mongo.log --logappend--dbpath D:\mongod ...

  6. 进程外session

    进程外session A  SqlServer 1.管理员身份运行cmd 2.更换目录  cd c:\Windows\Microsoft.NET\Framework\v4.0.30319> 3. ...

  7. js笔记---封装一般运动

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  8. vi编辑文件E437: terminal capability "cm" required 解决办法

    E437: terminal capability "cm" required 这个错误一般是环境变量TERM没有配置或者配置错误所致. 解决办法: 执行export TERM=x ...

  9. linux内核中创建线程方法

    1.头文件 #include <linux/sched.h> //wake_up_process() #include <linux/kthread.h> //kthread_ ...

  10. fzu 2171 防守阵地 II

    Problem 2171 防守阵地 II Accept: 31    Submit: 112Time Limit: 3000 mSec    Memory Limit : 32768 KB  Prob ...