可持久化线段树

  可持久化线段树是一种神奇的数据结构,它跟我们原来常用的线段树不同,它每次更新是不更改原来数据的,而是新开节点,维护它的历史版本,实现“可持久化”。(当然视情况也会有需要修改的时候)

  可持久化线段树的应用有很多,仅以区间第K大这种简单的问题来介绍这种数据结构。

  我们原本建立的线段树是表示区间的,或者说,维护的是【位置】,存的是每个位置上的各种信息。它的优点是满足区间加法,但不满足区间减法,所以我们这里要换一种建树方式:对于每个区间[1,i]建立一棵权值线段树。这个线段树的作用其实就跟前缀和差不多,且像前缀和一样满足区间减法!只不过我们在求前缀和的时候保留的是sum,而权值线段树把所有的值都存下来了。

  这里说一下它的保存方式:对[1,x]这个节点,它需要维护一个cnt值,表示在[1,x]这个值域,有cnt个数。

  举个栗子,我们现在有一个序列{1,2,3,4,5,2,3,3,3,3}

  然后对于表示区间[1,10]的线段树,它的节点是这样建的

      

  可以看出,值在[1,5]的有10个数,在[1,2]的有3个数……以此类推

  那么我们在查询第K大的时候,就可以像平衡树那样!如果左儿子的cnt>=k则在左边找,否则在右边找,那么我们就可以顺利地查询到第K大了~

  那么问题来了:如果我想查询[3,7]这个区间上第3大的数应该怎么办呢?(这个地方容易晕,一定要分清原序列的区间和值域,虽然都是用方括号的区间表示的……如果看了这句话更晕了,那就忘了它吧)

  那么就要回到我们之前说的【前缀和】上来了,我们以前快速求[l,r]的区间和,是利用前缀和[1,l-1]和[1,r]区间相减快速计算的,同理,我们也可以利用[1,l-1]和[1,r]两棵线段树来进行区间第K大的查询。即在两棵树上同时往下走!详见代码。

 //POJ 2104
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
using namespace std;
const int N=;
//#define debug struct node{
int x,num,rank;
}a[N];
bool cmpx(node a,node b){
return a.x<b.x;
}
bool cmpn(node a,node b){
return a.num<b.num;
} struct Tree{
int cnt,l,r;
}t[N*];
int root[N],cnt=,n,m; #define mid (l+r>>1)
void updata(int &o,int l,int r,int pos){
t[++cnt]=t[o], o=cnt, ++t[o].cnt;
if (l==r) return;
if (pos<=mid) updata(t[o].l,l,mid,pos);
else updata(t[o].r,mid+,r,pos);
#ifdef debug
printf("%d %d %d %d\n",o,l,r,pos);
#endif
} int query(int i,int j,int rank){
i=root[i],j=root[j];
int l=,r=n;
while(l!=r){
if (t[t[j].l].cnt-t[t[i].l].cnt>=rank)//在两棵树上一起往下走
r=mid,i=t[i].l,j=t[j].l;
else{
rank-=t[t[j].l].cnt-t[t[i].l].cnt;
l=mid+,i=t[i].r,j=t[j].r;
}
}
return l;
}
#undef mid int main(){
freopen("file.in","r",stdin);
scanf("%d%d",&n,&m);
int x=;
F(i,,n) {scanf("%d",&a[i].x); a[i].num=i;}
sort(a+,a+n+,cmpx);
F(i,,n) a[i].rank=i;
sort(a+,a+n+,cmpn);
F(i,,n) {
root[i]=root[i-];
updata(root[i],,n,a[i].rank);//此处可以先不理解……
//简单来说就是:为了节约空间,我们并不需要真的给每个区间建一棵完整的线段树
//而是可以在原来的基础上进行新的维护(即原来的为历史版本)
}
sort(a+,a+n+,cmpx);
F(i,,m){
int l,r,k;
scanf("%d%d%d",&l,&r,&k);
printf("%d\n",a[query(l-,r,k)].x);
}
return ;
}

【POJ】【2104】区间第K大的更多相关文章

  1. POJ 2104 区间第k大(主席树)

    题目链接:http://poj.org/problem?id=2104 题目大意:给定还有n个数的序列,m个操作,每个操作含有l,r,k,求区间[l,r]第k大 解题思路:线段树只能维护序列的最大值最 ...

  2. Poj 2104区间第k大(归并树)

    题目链接 K-th Number Time Limit: 20000MS Memory Limit: 65536K Total Submissions: 36890 Accepted: 11860 C ...

  3. POJ 2104 K-th Number 主席树(区间第k大)

    题目链接: http://poj.org/problem?id=2104 K-th Number Time Limit: 20000MSMemory Limit: 65536K 问题描述 You ar ...

  4. POJ 2104 静态找区间第k大

    静态区间第k大的问题,往往可以利用主席树来解决 这是主席树的第一道题 主席树大概可以理解为在n个节点上都建立一棵线段树,但是想想会超出内存 每一个节点保存的线段树都记录当前整段前缀区间的信息 但是因为 ...

  5. poj 2104 主席树(区间第k大)

    K-th Number Time Limit: 20000MS   Memory Limit: 65536K Total Submissions: 44940   Accepted: 14946 Ca ...

  6. POJ 2104 && POJ 2761 (静态区间第k大,主席树)

    查询区间第K大,而且没有修改. 使用划分树是可以做的. 作为主席树的入门题,感觉太神奇了,Orz /* *********************************************** ...

  7. POJ 2104 HDU 2665 主席树 解决区间第K大

    两道题都是区间第K大询问,数据规模基本相同. 解决这种问题, 可以采用平方划分(块状表)复杂度也可以接受,但是实际表现比主席树差得多. 这里大致讲一下我对主席树的理解. 首先,如果对于某个区间[L,R ...

  8. 解决区间第K大的问题的各种方法

    例题:http://poj.org/problem?id=2104 最近可能是念念不忘,必有回响吧,总是看到区间第k大的问题,第一次看到是在知乎上有人面试被弄懵了后来又多次在比赛中看到.以前大概是知道 ...

  9. 静态区间第k大(主席树)

    POJ 2104为例(主席树入门题) 思想: 可持久化线段树,也叫作函数式线段树,也叫主席树(高大上). 可持久化数据结构(Persistent data structure):利用函数式编程的思想使 ...

随机推荐

  1. nginx安装 nginx: [emerg] getpwnam(“www”) failed 错误

    inux 64系统中安装nginx1.3时如果出现错误:nginx: [emerg] getpwnam(“www”) failed解决方法1:      在nginx.conf中 把user nobo ...

  2. U6会计科目导入致对账不平

    一个客户,用的是U6版本,想将己使用的账套的科目导入新建的账套中,本想用用友本身自带的总账工具导入,发现导不了.没办法,只能打开数据库,手工导入. 月末结账时,发现对账不平.问题是余额表与明细不平,大 ...

  3. 使用WIF实现单点登录Part II —— Windows Identity Foundation基本原理

    在上一篇文章中,我们已经使用WIF构建了一个基于MVC4的简单的身份验证程序,在这篇文章里,我们将探讨一下到底什么是WIF,以及它的工作原理.然后在下一篇文章开始,我们将实际操作,实现单点登录功能. ...

  4. STL之容器基本操作

    容器类 STL Container Header Applications vector <vector> 直接访问任意元素,快速插入.删除尾部元素 deque <deque> ...

  5. Java入门到精通——调错篇之解决MyEclipse 输入注册码后:Enter or update your subscription information.问题

    这几天,我用MyEclipse做例子的时候总是出现下面图上面的提示: 不用看就是注册码到期了要注册.找了好几个注册码总是出现Enter or update your subscription info ...

  6. MIFARE系列1《MIFARE简介》

    随着社会的发展,智能卡在很多领域得到了广泛的应用.特别是非接触卡,由于使用方便以及功能强大的特点,在管理.公交.工作证.身份识别等领域得到了快速的普及和推广. 非接触卡已经逐步发展成为一个独立的跨学科 ...

  7. 基于AppCan MAS系统,如何轻松实现移动应用数据服务?

    完成一个移动应用开发,前端提供页面展示,当它要与一些业务系统进行交互,又该如何实现呢?2016AppCan移动开发者大会上,AppCan前端开发经理杨庆,分享了AppCan轻松实现移动应用数据服务的方 ...

  8. echo换行的蛋疼事

    openstack@openstack:~$ echo "abc" | shasum03cfd743661f07975fa2f1220c5194cbaff48451  -而使用Ja ...

  9. golang处理错误的艺术

    golang中关键API的调用都会在最后返回err(golang多值返回). 调用者可以选择处理, 或者不处理该err, 或原装返回给上一层的调用者. golang中的err是error类型, typ ...

  10. Python实现NN(神经网络)

    Python实现NN(神经网络) 参考自Github开源代码:https://github.com/dennybritz/nn-from-scratch 运行环境 Pyhton3 numpy(科学计算 ...