\(\\\)

BSGS


用于求解关于 \(x\) 的方程:

\[a^x\equiv b\pmod p\ ,\ (p,a)=1
\]

一般求解的是模意义下的指数,也就是最小非负整数解。

\(\\\)

算法思想


本质是双向搜索,或阈值优化的思想。

首先设"步幅" 为 \(m=\lceil{ \sqrt p}\rceil\) ,然后将方程写作

\[a^{i\times m-j}\equiv b\pmod p
\]

其中 \(i\) 就是所谓"大步", \(j\) 就是所谓"小步",我们要把他们组合在一起。

直接搜索两个数不如折半搜索一个数,然后再组合。

于是我们可以将分母上的 \(a^j\) 移项,得到

\[a^{i\times m}\equiv b\times a^j\pmod p
\]

然后就成了比较标准的双向搜索形式。

先把右一半的答案记下来,然后拿左一半搜到的每一个数去查询是否出现过就好了。

\(\\\)

代码实现


对于每一个 \(j\in [0,m-1]\) ,将 \(b\times a^j\ \%\ p\) 的答案放到哈希表里。

然后对于每一个 \(i\in[1,m](\) 此范围依据定义而来,尤其注意!\()\),去哈希表里查是否有 \(a^{im}\ \%\ p\) 的值。

还有两个小优化:

  • 注意到求出为同一个值的 \(j\) ,因为在答案里系数为 \(-1\) ,所以对于求出最小解 \(j\) 肯定是越大越优秀。

    因此再哈希表里插入相同的值时,可以直接取 \(max\), 如果是按序插入直接覆盖即可。

    这里也延申出了一种做法,直接用 \(map\) 存储结果,将结果映射到 \(j\) ,按序插入直接覆盖,复杂度多个\(log\) 。

  • 运算过程中只需一次快速幂。

    一开始每一次都是乘上 \(a\) ,所以一遍循环一遍乘即可,第二步同理,只需题前计算出 \(a^m\) 的值。

    这一优化在需要快速乘的时候效果很好。

我们以 [TJOI2007]可爱的质数 一题为例提供一份模板。

#include<map>
#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define R register
using namespace std;
typedef long long ll; map<ll,ll> s; inline ll qpow(ll x,ll t,ll p){
ll res=1;
while(t){
if(t&1) (res*=x)%=p;
(x*=x)%=p; t>>=1;
}
return res;
} inline ll BSGS(ll a,ll b,ll p){
b%=p;
ll m=ceil(sqrt(p));
for(R ll i=0;i<m;++i,(b*=a)%=p) s[b]=i;
a=qpow(a,m,p);
for(R ll i=1,tmp=a;i<=m;++i,(tmp*=a)%=p)
if(s.find(tmp)!=s.end()){
if(i*m<s[tmp]) continue;
return i*m-s[tmp];
}
return -1;
} int main(){
ll a,b,p;
scanf("%lld%lld%lld",&p,&a,&b);
ll x=BSGS(a,b,p);
if(x>=0) printf("%lld\n",x);
else puts("no solution");
return 0;
}

大步小步法(BSGS) 学习笔记的更多相关文章

  1. 2022-07-10 第五小组 pan小堂 css学习笔记

    css学习笔记 什么是 CSS? CSS 指的是层叠样式表* (Cascading Style Sheets) CSS 描述了如何在屏幕.纸张或其他媒体上显示 HTML 元素 CSS 节省了大量工作. ...

  2. BSGS 扩展大步小步法解决离散对数问题 (BZOJ 3239: Discrete Logging// 2480: Spoj3105 Mod)

    我先转为敬? orz% miskcoo 贴板子 BZOJ 3239: Discrete Logging//2480: Spoj3105 Mod(两道题输入不同,我这里只贴了3239的代码) CODE ...

  3. 微信小程序视频学习笔记

    [清华大学]学做小程序 https://www.bilibili.com/video/av21987398 2.2创建项目和文件结构 小程序包含一个描述整体程序的app和多个描述各自页面的page 配 ...

  4. BSGS学习笔记

    用于求\(A^{x} \equiv B \pmod{C}\) 高次方程的最小正整数解x,其中C为素数 引理1:$a^{i\mod\varphi(p) } \equiv a^{i} $ (mod p) ...

  5. 第1-5章 慕课网微信小程序开发学习笔记

    第1章 前言:不同的时代,不同的Web --微信小程序商城构建全栈应用 http://note.youdao.com/noteshare?id=a0e9b058853dbccf886c1a890594 ...

  6. 小甲鱼Python学习笔记

    一 isdigit()True: Unicode数字,byte数字(单字节),全角数字(双字节),罗马数字False: 汉字数字Error: 无 isdecimal()True: Unicode数字, ...

  7. BSGS 学习笔记

    问题:求$a^x\equiv b\ (mod\ p)$的最小正整数解. 这时候就要用到BSGS(拔山盖世)算法.直接进入正题: 设$x=im-n$, 则原式等于$a^{im-n}\equiv b\ ( ...

  8. 第6章 AOP与全局异常处理6.1-6.4 慕课网微信小程序开发学习笔记

    第6章 AOP与全局异常处理 https://coding.imooc.com/learn/list/97.html 目录: 第6章 AOP与全局异常处理6-1 正确理解异常处理流程 13:236-2 ...

  9. 第7章 数据库访问与ORM 慕课网微信小程序开发学习笔记

    第7章 数据库访问与ORM https://coding.imooc.com/learn/list/97.html 目录: 7-1 数据库操作三种方式之原生SQL 19:09 7-2 从一个错误了解E ...

随机推荐

  1. 实践部署与使用apache kafka框架技术博文资料汇总

    前一篇Kafka框架设计来自英文原文(Kafka Architecture Design)的翻译及整理文章,非常有借鉴性,本文是从一个企业使用Kafka框架的角度来记录及整理的Kafka框架的技术资料 ...

  2. 全局最小割模版 n^3

    //点标从0-n-1, 開始时先init 复杂度n^3 //对于边(u,v,flow): //g[u][v]+=flow; //g[v][u]+=flow; typedef long long ll; ...

  3. ora-12541无监听的一种场景

    项目上突然出现无法连接Oracle数据库的情况,提示无监听程序. 现象: 查看 listener.ora配置无问题,用Net Configuration Assistant重建监听,NCA也处于假死状 ...

  4. linux driver开发

    1 开发linux driver时的调试思路 基本上是打印调试,原因很简单,方便.或者使用工具挂住cpu.

  5. python set dict tuple and list

    1 set 1.1 不变集合,frozenset 也就是说,集合中的元素不能删除,也不能增加. 1.2 两个集合之间的关系 isdisjoint()函数. 2 各个数据结构的不同显示 2.1 set ...

  6. SoapUI中Code多行显示设置

    你们的SoapUI 有设置下面的选项吗? Before adding your project, we recommend that you enable the following ReadyAPI ...

  7. leetcode 659. Split Array into Consecutive Subsequences

    You are given an integer array sorted in ascending order (may contain duplicates), you need to split ...

  8. iOS设备,fixed布局出问题

    window.deviceId = '{{$deviceId}}'; window.iOS = navigator.userAgent.match(/(iPad|iPhone|iPod)/g) ? t ...

  9. UICollectionView基础/UICollectionViewCell的四种创建方式

    前言 UICollectionViewCell的四种创建方式:http://blog.csdn.net/ZC_Huang/article/details/52002302 这个控件,看起来与UITab ...

  10. Watir: 对浏览器的保存文件操作, 其实应用的是AutoIt脚本

    def save_file(filepath) ai =WIN32OLE.new("AutoItX3.Control") ai.WinWait("FileDownload ...