Relational Algebra



Relational Algebra is the mathematical basis for the query language SQL


  • Introduction.

    • So now you have learn how to design good conceptual models to store information with the ER-model
    • And you also know how to turn an ER-model into a Relational model
    • Let us jump the next step - which is defining the Relational Database and entering the data into the database - and look at data manipulation
    • What can we do with the data ????




  • Relational Algebra: Overview
    • is a mathematical language for manipulating relations (ala mathematical definition of "relation" - which is a subset of some cartesian product)
    • contains:
      • set operators
      • relational database specific operators
      • set functions
    • is used to specify a result set that satisfies a certain "selection criteria"
    • the result of an operation in relational algebra is always a relation




  • Set operations
    • You should all know what set union is:

      • Suppose A = {i, j, k} and B = {k, x, y}
      • Then the union of A and B is {i, j, k, x, y}
      • Note that tuples in sets A and B must have the same FORMAT (same number and type of attributes) to be used in the union operation.
    • You should also have learned what set intersection is:
      • Suppose A = {i, j, k} and B = {k, x, y}
      • Then the intersection of A and B is {k}
      • Note that tuples in sets A and B must have the same FORMAT (same number and type of attributes) to be used in the intersection operation.
    • You should also have learned what set difference is:
      • Suppose A = {i, j, k} and B = {k, x, y}
      • Then the difference of A and B is {i, j}
      • Note that tuples in sets A and B must have the same FORMAT (same number and type of attributes) to be used in the set difference operation.
    • I have already discussed the cartesian productclick here




  • Set Functions
    • Operates on a set of values and produce a single value
    • To illustrate the various set function, we apply the set functions on this set of value:

      A = {1, 4, 9}

      Results:

      • sum(A) = sum of all values of A (answer = 14)
      • avg(A) = average of all values in A (answer= 4.6666)
      • max(A) = max of all values in A (answer = 9)
      • min(A) = min of all values in A (answer = 1)
      • any(A) = test if set A has at least one element (answer = TRUE) (Note: result FALSE means set A is empty)
      • count(A) = cardinality of set A (answer = 3 (= number of elements in set))


    Relational database specific operations



  • σ (Condition) (R)         (selection)
    • Selects tuples from a relation R that satisfies the condition Condition
    • The Condition expression contains constants and/or attributes of relation R (the condition expression cannot be a set !!!)
    • The result of σ (Condition) (R) is a subset of tuples of R that satisfies the boolean condition Condition
    • Examples:
      • Retrieve all employee tuples working for department number 4:

        σ (dno = 4) (employee) 
      • The following diagram shows the result graphically (hopefully, it will illustrates the concept unambiguously):

      • Retrieve all employees earning more than $30,000:
        σ (salary > 30000) (employee) 

      • Retrieve all employees working for department number 4 and eaning more than $30,000:
        σ (dno = 4 and salary > 30000) (employee) 

        OR:

        σ (salary > 30000) ( σ (dno = 4) (employee) )




  • π (attribute-list)         (projection)
    • Selects out only the attribute values attribute-list from all tuples in relation R
    • The attribute-list contains the list of attributes in relation R that will be selected.
    • The result of π (attribute-list) (R) contains the is a subset of tuples of R that satisfies the boolean condition Condition
    • Examples:
      • Retrieve all SSN from the employees

        π ssn (employee) 
      • The following diagram shows the result graphically (hopefully, it will illustrates the concept unambiguously):

      • Retrieve the sex information from all employees:
        π sex (employee) 

        The following diagram shows the result graphically (hopefully, it will illustrates the concept of projection unambiguously):

        Notes:

        • The output of a Relational Algebra query is set.

          set in Mathematics does not have duplicate elements

          Therefore, the result of πsex (employee) is the set {F, M} because duplicates are removed


        • In SQL, the user will have the option to remove duplicates

          That is because removing duplicates require longer time to process....

          (The user has the option to incur the cost or not...)





  • Combining information from 2 relations
    • Consider the following query:

      Find FName and LName of all employees in the "Research" department
    • Observation:
      • We will need to combine information in the employee and department relations to answer the query.
    • But we must be careful in combining the information:
         Employee:
      +-----------+--------+---------+-----------+-----+
      | ssn | fname | lname | bdate | dno | .... (other columns omitted)
      +-----------+--------+---------+-----------+-----+
      | 123456789 | John | Smith | 09-JAN-55 | 5 |
      | 333445555 | Frankl | Wong | 08-DEC-45 | 5 |
      | 999887777 | Alicia | Zelaya | 19-JUL-58 | 4 |
      | 987654321 | Jennif | Wallace | 20-JUN-31 | 4 |
      | 666884444 | Ramesh | Narayan | 15-SEP-52 | 5 |
      | 453453453 | Joyce | English | 31-JUL-62 | 5 |
      | 987987987 | Ahmad | Jabbar | 29-MAR-59 | 4 |
      | 888665555 | James | Borg | 10-NOV-27 | 1 |
      +-----------+--------+---------+-----------+-----+ Department:
      +----------------+---------+-----------+--------------+
      | dname | dnumber | mgrssn | mgrstartdate |
      +----------------+---------+-----------+--------------+
      | Research | 5 | 333445555 | 22-MAY-78 |
      | Administration | 4 | 987654321 | 01-JAN-85 |
      | Headquarters | 1 | 888665555 | 19-JUN-71 |
      +----------------+---------+-----------+--------------+

      How to "combine" tuples from Employee and Department:

      • Only combine a tuple from employee with a tuple from department when their department numbers are EQUAL


        (Remember we used the department number in Employee as a foreign key !!!

        The  department number in Employee "refers" to one tuple in Department


    • Solution:
      1. First find the department number of the "Research" department:

        R1 = π dnumber ( σ (dname = 'Research') ( department ) )

        Graphically:

      2. Then we combine the department and employee through a "mindless" cartesian product operation:
        R2 = R1 x employee

        The result of this operation is "tagging" an extra column "dnumber" to the employee relation:

      3. Now we can use a select operation to select out the "right tuples" :

        Because dnumber is now an attribute of the (new) relation R2 !!!

        π(FName, LName) (σ (dno = dnumber) ( R2 ) )
      4. Graphically:





  • Efficiency consideration of queries
    • Correctness is the most important property of a query

      The second most important property of a query is efficiency


    • There maybe multiple queries that retrieve the correct set of tuples (answer)

      The difference of the queries may be their execution speed


    • Consider the following solution:
      π(FName, LName) (σ (dno = dnumber and dname = 'Research') ( employee x department ) )
    • Although this query is correct , it will take longer time to process because of the larger amount of intermediate data that the query produces:
    • The cartesian product employee x department will produce huge number of tuples - many more than in the previous solution.




  • Join operations
    • The join operation (bow tie symbol) is equivalent to:


    • Example:
        Retrieve all employees from the "Research" department
      • slower (but correct) solution:

        It is slower because the join operation will result in more tuples as intermediate results


      • The faster version is:




  • The "theta join" operation
    • The condition in the join operation is of the form:

         Condition

      1

       and Condition

      2

       and ....
         
    • Each condition is of the form "x θ y", where x and y are attributes or constants
    • And θ is one of the following relational operators:
      • ==
      • !=
      • <
      • <=
      • >=
      • >
    • A join operation with a "general" join condition (where θ can be any relational operation), is called a theta join




  • The "equi-join" operation
    • Often (almost always :-)), we use the equal relational operation in the join operation:

           Condition

      1

       and Condition

      2

       and ....
      

      where each condition is of the form:

          x == y
      

      where x and y are attributes or constants


    • Equi-join:
      • join operation where the the join condition contain only equality compare operators is called a equi-join




  • The "natural join" (*) operation
    • The natural join operation is an equi-join operation follow by a projection operation that removes one of the duplicate attributes.
    • Since the equi-join will for tuples when the attribute values are equal, all tuples that produced by an equi-join will have the same attribute value under the join condition attributes.
    • The natural join operation is denoted by a star (*):
          R1 * attr1,attr2 R2
      


  • Outer-join
    • Outer-joins:

      • An outer join does not require each record in the two joined tables to have a matching values.
      • The rusulting joined table will retains records from one or both tables even if no other matching value exists.

    • The 3 flavors of outer-joins:
      • Left outer-join: A ⟕ B

        • The result of the left outer join (or simply left joinA ⟕ B always contains all records of the "left" table (A)even if the join-condition does not find any matching record in the "right" table (B).


        • unmatched tuple from A is processed "normally" (discuss in the join operation)
        • An  matched tuple from A is combined with a row of NULL value (so that the resulting tuple have the same columns as an matched tuple)

        • Example:
               A:                 B:
          
                  X     Y            U     V
          +-----+-----+ +-----+-----+
          | 1 | 7 | | 1 | 8 |
          +-----+-----+ +-----+-----+
          | 2 | 5 | | 2 | 3 |
          +-----+-----+ +-----+-----+
          | 3 | 4 | | 4 | 9 |
          +-----+-----+ +-----+-----+ A ⟕A.X=B.U B: X Y U V
          +-----+-----+-----+-----+
          | 1 | 7 | 1 | 8 |
          +-----+-----+-----+-----+
          | 2 | 5 | 2 | 3 |
          +-----+-----+-----+-----+
          | 3 | 4 | NULL| NULL|
          +-----+-----+-----+-----+

      • Right outer-join: A ⟖ B
        • The result of the right outer join (or simply right joinA ⟖ B always contains all records of the "right" table (B)even if the join-condition does not find any matching record in the "left" table (A).


        • matched tuple from B is processed "normally" (discuss in the join operation)
        • An  unmatched tuple from B is combined with a row of NULL value (so that the resulting tuple have the same columns as an matched tuple)

        • Example:
               A:                 B:
          
                  X     Y            U     V
          +-----+-----+ +-----+-----+
          | 1 | 7 | | 1 | 8 |
          +-----+-----+ +-----+-----+
          | 2 | 5 | | 2 | 3 |
          +-----+-----+ +-----+-----+
          | 3 | 4 | | 4 | 9 |
          +-----+-----+ +-----+-----+ A ⟖A.X=B.U B: X Y U V
          +-----+-----+-----+-----+
          | 1 | 7 | 1 | 8 |
          +-----+-----+-----+-----+
          | 2 | 5 | 2 | 3 |
          +-----+-----+-----+-----+
          | NULL| NULL| 4 | 9 |
          +-----+-----+-----+-----+

      • Full outer-join: A ⟗ B
        • The result of the full outer join (or simply outer joinA ⟗ B always contains all records of both tableseven if the join-condition does not find any matching record...


        • matched tuple is processed "normally" (discuss in the join operation)
        • An  unmatched tuple in either table is combined with a row of NULL value (so that the resulting tuple have the same columns as an matched tuple)

        • Example:
               A:                 B:
          
                  X     Y            U     V
          +-----+-----+ +-----+-----+
          | 1 | 7 | | 1 | 8 |
          +-----+-----+ +-----+-----+
          | 2 | 5 | | 2 | 3 |
          +-----+-----+ +-----+-----+
          | 3 | 4 | | 4 | 9 |
          +-----+-----+ +-----+-----+ A ⟗A.X=B.U B: X Y U V
          +-----+-----+-----+-----+
          | 1 | 7 | 1 | 8 |
          +-----+-----+-----+-----+
          | 2 | 5 | 2 | 3 |
          +-----+-----+-----+-----+
          | 3 | 4 | NULL| NULL|
          +-----+-----+-----+-----+
          | NULL| NULL| 4 | 9 |
          +-----+-----+-----+-----+

      Note:

      • If attribute names are the same in both relations, you can omit the join condition in outer joins
      • In that case, you will also remove one column of the same name from the resulting table

      • Example:
             A:                 B:
        
                X     Y            X     V
        +-----+-----+ +-----+-----+
        | 1 | 7 | | 1 | 8 |
        +-----+-----+ +-----+-----+
        | 2 | 5 | | 2 | 3 |
        +-----+-----+ +-----+-----+
        | 3 | 2 | | 4 | 9 |
        +-----+-----+ +-----+-----+ A ⟗ B: X Y V
        +-----+-----+-----+
        | 1 | 7 | 8 |
        +-----+-----+-----+
        | 2 | 5 | 3 |
        +-----+-----+-----+
        | 3 | 2 | NULL|
        +-----+-----+-----+
        | 4 | NULL| 9 |
        +-----+-----+-----+

    • Teaching notes:
      • I personally dislike NULL values....


      • Therefore, I will avoid using outer joins in my solutions....




  • More examples....
    1. Find fname and lname of all employees working in the "Research" department that earn more than $50,000


    2. Find fname and lname of John Smith's supervisor

    3. Find fname and lname of all employees that have dependents

    4. Find fname and lname of all employees that do not have dependents

      This solution is wrong:

      The following diagram shows how the query works on an example database, which illustrates why the query is wrong:


      The correct solution is:

      • Help1 = set of SSN of employees with dependents
      • Help2 = set of SSN of employees without any dependents

    5. Find fname and lname of employees who has more than one dependents of the same sex (i.e., 2 or more boys or 2 or more girls):
  • NOTE: so join conditions do not always have to be "equal" !!!





  • A comment...
    • Clearly, I can easily formulate a gad-sillion different queries in the next day or so, so:

      DO NOT

          prepare for tests with

      memorizing

        facts - you gotta understand what's going on and do the queries "from scratch"....
    • And for those students that have never had me before: I have a reputation to challenge student's grey cells to work overtime.... so you should expect some very interesting queries.... and plenty of opportunity to practice your skill (in the homeworks and SQL projects).
  • http://www.mathcs.emory.edu/~cheung/Courses/377/Syllabus/4-RelAlg/intro.html

Relational Algebra 关系代数的更多相关文章

  1. Advanced SQL: Relational division in jOOQ

              i   Rate This Relational algebra has its treats. One of the most academic features is the ...

  2. 转:如何学习SQL(第二部分:从关系角度理解SQL)

    转自:http://blog.163.com/mig3719@126/blog/static/285720652010950825538/ 6. 从关系角度理解SQL 6.1. 关系和表 众所周知,我 ...

  3. A Tale of Three Apache Spark APIs: RDDs, DataFrames, and Datasets(中英双语)

    文章标题 A Tale of Three Apache Spark APIs: RDDs, DataFrames, and Datasets 且谈Apache Spark的API三剑客:RDD.Dat ...

  4. 数据库系统概论(2)——Chap. 2 关系数据库基础

    数据库系统概论(2)--Chap.2 关系数据库基础 一.关系数据结构及形式化定义 1.关系 关系模型的数据结构只包含单一的数据结构--关系.在关系模型中,现实世界的实体及实体间的各种联系均用单一的结 ...

  5. SQL:百科

    ylbtech-SQL:百科 结构化查询语言(Structured Query Language)简称SQL,是一种特殊目的的编程语言,是一种数据库查询和程序设计语言,用于存取数据以及查询.更新和管理 ...

  6. [源码分析] 带你梳理 Flink SQL / Table API内部执行流程

    [源码分析] 带你梳理 Flink SQL / Table API内部执行流程 目录 [源码分析] 带你梳理 Flink SQL / Table API内部执行流程 0x00 摘要 0x01 Apac ...

  7. Python数据科学手册-Pandas:合并数据集

    将不同的数据源进行合并 , 类似数据库 join merge . 工具函数 concat / append pd.concat() 简易合并 合并高维数据 默认按行合并. axis=0 ,试试 axi ...

  8. 数据库精华知识点总结(1)—数据库的三层模式和二级映像,E-R(实体联系图)图,关系模型

    Data base: 长期存储在计算机内,有组织的,可共享的大量数据集合.基本特征:永久存储,可共享,有一定的物理和逻辑结构. Data base manage system(DBMS):用户和os之 ...

  9. 10分钟学习pandas

    10 Minutes to pandas This is a short introduction to pandas, geared mainly for new users. You can se ...

随机推荐

  1. 创建javaScript 对象

    创建新实例person 并向其添加四个属性: person=new Object(); person.firstname="Bill"; person.lastname=" ...

  2. mysql03---触发器

    触发器trigger:某条数据改变,希望其他数据也改变(一张表的数据改变,另一张表的数据也变).监测insert,update,delete.能够监测增删改并出发增删改. 监测点(table)监测事件 ...

  3. ZOJ1610 Count the Colors —— 线段树 区间染色

    题目链接:https://vjudge.net/problem/ZOJ-1610 Painting some colored segments on a line, some previously p ...

  4. EF3:Entity Framework三种开发模式实现数据访问

    前言 Entity Framework支持Database First.Model First和Code Only三种开发模式,各模式的开发流程大相径庭,开发体验完全不一样.三种开发模式各有优缺点,对 ...

  5. 2018.10.20 XMYZ Day1总结

    上周的忘写了……题目没有作者…… T1.backpack 期望得分100,实际得分100. 感觉我自己真是不如以前了……以前做这种题都是秒掉的,现在怎么想了10分钟啊…… 因为物品的体积和价值都非常小 ...

  6. hdu 1480

    钥匙计数之二 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Sub ...

  7. bzoj1101

    1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2319  Solved: 936[Submit][Status] ...

  8. Python sklearn Adaboost

    1. Adaboost类库概述 scikit-learn中Adaboost类库比较直接,就是AdaBoostClassifier和AdaBoostRegressor两个,从名字就可以看出AdaBoos ...

  9. 深入学习 Block

    本文翻译自苹果的文档,有删减,也有添加自己的理解部分. 如果有Block语法不懂的,可以参考fuckingblocksyntax,里面对于Block 为了方便对比,下面的代码我假设是写在ViewCon ...

  10. C语言的随机发牌程序(红桃、黑桃、梅花、方块)

    做一个随机发牌的C语言程序,供大家学习,思考. 未做任何注释,有测试时候留下的一些输出语句,一遍方便测试. /* author:nunu qq:398269786 */ #include<std ...