Mondriaan's Dream
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 18096   Accepted: 10357

Description


Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after producing the drawings in his 'toilet series' (where he had to use his toilet paper to draw on, for all of his paper was filled with squares and rectangles), he dreamt of filling a large rectangle with small rectangles of width 2 and height 1 in varying ways. 

Expert as he was in this material, he saw at a glance that he'll need a computer to calculate the number of ways to fill the large rectangle whose dimensions were integer values, as well. Help him, so that his dream won't turn into a nightmare!

Input


The input contains several test cases. Each test case is made up of two integer numbers: the height h and the width w of the large rectangle. Input is terminated by h=w=0. Otherwise, 1<=h,w<=11.

Output


For each test case, output the number of different ways the given rectangle can be filled with small rectangles of size 2 times 1. Assume the given large rectangle is oriented, i.e. count symmetrical tilings multiple times.

Sample Input



Sample Output



题意:


给出n * m的棋盘,问用1 * 2的骨牌铺满棋盘的方案数。

分析:


棋盘n,m很小,可以想到状压dp。一般的状压dp是枚举上一维的状态和当前这维状态然后转移。

在蓝书上P384页,也有一种解法。但是网上有另一种做法:http://blog.csdn.net/sf____/article/details/15026397

十分感谢博主的思路。

思路是这样的:

依然定义f[i][j][k],i为第i行,j为第第j列。k为二进制数,1 - k - 1位为当前行状态,k - m 为上一行状态,当前更新把第k位从上一行更新成当前行状态。

二进制中0表示下一行这个位置可以放数(即当前位置不放或者横着放),1表示下一行这个位置不可以放数(即当前位置竖着放)

可以得到dp状态:

dp[i][j][k ^ (1 << j)] += dp[i][j - 1][k]; -- 1 //竖着放 或者不放,因为不可能连续两行不放,所以k ^ (1 << j)和k相同位置必须有一位为1

dp[i][j][k ^ (1 << (j - 1))] += dp[i][j - 1][k]; --2 //从前一格竖着放的转移到当前位置横着放的 条件:当前这位上一格必须放了

因为i 和 j其实是刷表的,可以转移成dp[2][k];就可以了

AC代码:


# include <iostream>
# include <cstdio>
# include <cstring>
using namespace std;
const int N = << ;
long long dp[][N];
int n,m,data;
int main(){
while(~scanf("%d %d",&m,&n) && (n + m)){
data = ( << m);
if(m > n)swap(n,m);
int now = ;
memset(dp[now],,sizeof dp[now]);
dp[now][] = ;
for(int i = ;i < n;i++){
for(int j = ;j < m;j++){
now ^= ;
memset(dp[now],,sizeof dp[now]);
for(int k = ;k < data;k++)if(dp[now ^ ][k]){
dp[now][k ^ ( << j)] += dp[now ^ ][k];
if(j && (k & ( << (j - ))) && !(k & ( << j)))
dp[now][k ^ ( << (j - ))] += dp[now ^ ][k];
}
}
}
printf("%lld\n",dp[now][]);
}
}

[Poj2411]Mondriaan's Dream(状压dp)(插头dp)的更多相关文章

  1. [poj2411] Mondriaan's Dream (状压DP)

    状压DP Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One nigh ...

  2. $POJ2411\ Mondriaan's\ Dream$ 状压+轮廓线$dp$

    传送门 Sol 首先状压大概是很容易想到的 一般的做法大概就是枚举每种状态然后判断转移 但是这里其实可以轮廓线dp 也就是从上到下,从左到右地放方块 假设我们现在已经放到了$(i,j)$这个位置 那么 ...

  3. POJ 2411 Mondriaan's Dream ——状压DP 插头DP

    [题目分析] 用1*2的牌铺满n*m的格子. 刚开始用到动规想写一个n*m*2^m,写了半天才知道会有重复的情况. So Sad. 然后想到数据范围这么小,爆搜好了.于是把每一种状态对应的转移都搜了出 ...

  4. POJ 2411 Mondriaan's Dream -- 状压DP

    题目:Mondriaan's Dream 链接:http://poj.org/problem?id=2411 题意:用 1*2 的瓷砖去填 n*m 的地板,问有多少种填法. 思路: 很久很久以前便做过 ...

  5. Poj 2411 Mondriaan's Dream(状压DP)

    Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Description Squares and rectangles fascina ...

  6. POJ-2411 Mondriann's Dream (状压DP)

    求把\(N*M(1\le N,M \le 11)\) 的棋盘分割成若干个\(1\times 2\) 的长方形,有多少种方案.例如当 \(N=2,M=4\)时,共有5种方案.当\(N=2,M=3\)时, ...

  7. P1879 [USACO06NOV]玉米田Corn Fields 状压dp/插头dp

    正解:状压dp/插头dp 解题报告: 链接! ……我真的太菜了……我以为一个小时前要搞完的题目调错误调了一个小时……90分到100我差不多搞了一个小时…… 然后这题还是做过的……就很气,觉得确实是要搞 ...

  8. poj2411 Mondriaan's Dream (轮廓线dp、状压dp)

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17203   Accepted: 991 ...

  9. poj2411 Mondriaan's Dream【状压DP】

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20822   Accepted: 117 ...

随机推荐

  1. php-PHP Warning: PHP Startup: Invalid library (maybe not a PHP library) 'xxx.so' in Unknown on line 0

    关于xxx.so,今天在安装php的模块时候老是报,xxx.so的问题,虽然不影响使用,但作为一名当年的程序员强迫症患者,誓死要把 他搞清楚,后面发现是删除了也没有影响,因为在安装php的时候已经将他 ...

  2. Android(java)学习笔记168:Activity 4 种启动模式

    1. 任务栈(task stack): 任务栈 是用来记录用户操作的行为,维护一个用户体验. 一个应用程序一般都是由多个activity组成的. 任务栈(task stack)记录存放用户开启的act ...

  3. 【搜索】P1468 派对灯 Party Lamps

    P1468 派对灯 Party Lamps 我们来分析一下对灯的操作 1.对所有灯的,这时吧所有灯看成一个整体 2.奇偶数的操作,这时可以把每两个数看成一个循环节 3.对3X+ 1的操作,这时可以把每 ...

  4. 优先队列 || POJ 1442 Black Box

    给n个数,依次按顺序插入,第二行m个数,a[i]=b表示在第b次插入后输出第i小的数 *解法:写两个优先队列,q1里由大到小排,q2由小到大排,保持q2中有i-1个元素,那么第i小的元素就是q2的to ...

  5. net core 使用ef生成实体类(SqlServer)

    1)打开程序包管理器控制台 2)输入命令  Install-Package Microsoft.EntityFrameworkCore.SqlServer 3)输入命令  Install-Packag ...

  6. 前段开发 jq ajax数据处理详细讲解。

    定义和用法 ajax() 方法通过 HTTP 请求加载远程数据. 常用的ajax结构模板: function indes(){ $.ajax({ url: '', type: "GET&qu ...

  7. Ahoi2014&Jsoi2014 支线剧情

    题目描述 题解: 每条边至少经过一次,说明经过下界为$1$. 然后套有源汇上下界最小费用可行流板子. 口胡一下. 此类问题的建图通式为: 1.假设原来的边流量上下界为$[l,r]$,那么在新图中建流量 ...

  8. [CF] 950A Left-handers, Right-handers and Ambidexters

    A. Left-handers, Right-handers and Ambidexters time limit per test1 second memory limit per test256 ...

  9. (13) openssl ca(签署和自建CA)

    用于签署证书请求.生成吊销列表CRL以及维护已颁发证书列表和这些证书状态的数据库.因为一般人无需管理crl,所以本文只介绍openssl ca关于证书管理方面的功能. 证书请求文件使用CA的私钥签署之 ...

  10. Beego:原生方式使用MySQL

    示例: package controllers import ( "database/sql" "fmt" "github.com/astaxie/b ...