http://acm.hdu.edu.cn/showproblem.php?pid=1114

Problem Description
Before ACM can do anything, a budget must be prepared and the necessary financial support obtained. The main income for this action comes from Irreversibly Bound Money (IBM). The idea behind is simple. Whenever some ACM member has any small money, he takes all the coins and throws them into a piggy-bank. You know that this process is irreversible, the coins cannot be removed without breaking the pig. After a sufficiently long time, there should be enough cash in the piggy-bank to pay everything that needs to be paid.

But there is a big problem with piggy-banks. It is not possible to determine how much money is inside. So we might break the pig into pieces only to find out that there is not enough money. Clearly, we want to avoid this unpleasant situation. The only possibility is to weigh the piggy-bank and try to guess how many coins are inside. Assume that we are able to determine the weight of the pig exactly and that we know the weights of all coins of a given currency. Then there is some minimum amount of money in the piggy-bank that we can guarantee. Your task is to find out this worst case and determine the minimum amount of cash inside the piggy-bank. We need your help. No more prematurely broken pigs!

 
Input
The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing two integers E and F. They indicate the weight of an empty pig and of the pig filled with coins. Both weights are given in grams. No pig will weigh more than 10 kg, that means 1 <= E <= F <= 10000. On the second line of each test case, there is an integer number N (1 <= N <= 500) that gives the number of various coins used in the given currency. Following this are exactly N lines, each specifying one coin type. These lines contain two integers each, Pand W (1 <= P <= 50000, 1 <= W <=10000). P is the value of the coin in monetary units, W is it's weight in grams. 
 
Output
Print exactly one line of output for each test case. The line must contain the sentence "The minimum amount of money in the piggy-bank is X." where X is the minimum amount of money that can be achieved using coins with the given total weight. If the weight cannot be reached exactly, print a line "This is impossible.". 
 
Sample Input
3
10 110
2
1 1
30 50
10 110
2
1 1
50 30
1 6
2
10 3
20 4
 
Sample Output
The minimum amount of money in the piggy-bank is 60.
The minimum amount of money in the piggy-bank is 100.
This is impossible.
 
发现自己不会举一反三  怎么这么笨
题目大意:
给你一个存钱罐开始的重量和装满的重量 然后是钱的种类
两个数分别表示前的价值和钱的重量  
求最小的钱数(当装满时)
分析:
就是背包   不过dp[i]给附成无穷大
然后计算最小值就行了
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<math.h>
#include<stdlib.h> using namespace std; #define INF 0xfffffff
#define N 55000
int dp[N];
int main()
{
int T,s,e,m,t,w[N],v[N];
scanf("%d",&T);
while(T--)
{
memset(w,,sizeof(w));
memset(v,,sizeof(v));
scanf("%d %d",&s,&e);
m=e-s;
for(int i=;i<=m;i++)
dp[i]=INF;
scanf("%d",&t);
for(int i=;i<=t;i++)
{
scanf("%d %d",&w[i],&v[i]);
}
for(int i=;i<=t;i++)
{
for(int j=v[i];j<=m;j++)
{
if(dp[j]>dp[j-v[i]]+w[i])
dp[j]=dp[j-v[i]]+w[i];
}
}
if(dp[m]==INF)
printf("This is impossible.\n");
else
printf("The minimum amount of money in the piggy-bank is %d.\n",dp[m]);
}
return ;
}

Piggy-Bank--hdu1114(完全背包)的更多相关文章

  1. 【bzoj1531】[POI2005]Bank notes 多重背包dp

    题目描述 Byteotian Bit Bank (BBB) 拥有一套先进的货币系统,这个系统一共有n种面值的硬币,面值分别为b1, b2,..., bn. 但是每种硬币有数量限制,现在我们想要凑出面值 ...

  2. hdu1114 完全背包

    题意:给出钱罐的重量,然后是每种钱的价值和重量,问钱罐里最少可能有多少钱. 完全背包. 代码: #include<iostream> #include<cstdio> #inc ...

  3. bzoj 1531 Bank notes 多重背包/单调队列

    多重背包二进制优化终于写了一次,注意j的边界条件啊,疯狂RE(还是自己太菜了啊啊)最辣的辣鸡 #include<bits/stdc++.h> using namespace std; in ...

  4. HDU1114(完全背包装满问题)

    Piggy-Bank Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  5. HDU-1114 完全背包+恰好装满问题

    B - Piggy-Bank Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Subm ...

  6. ACM Piggy Bank

    Problem Description Before ACM can do anything, a budget must be prepared and the necessary financia ...

  7. ImageNet2017文件下载

    ImageNet2017文件下载 文件说明 imagenet_object_localization.tar.gz包含训练集和验证集的图像数据和地面实况,以及测试集的图像数据. 图像注释以PASCAL ...

  8. ImageNet2017文件介绍及使用

    ImageNet2017文件介绍及使用 文件说明 imagenet_object_localization.tar.gz包含训练集和验证集的图像数据和地面实况,以及测试集的图像数据. 图像注释以PAS ...

  9. Android开发训练之第五章第五节——Resolving Cloud Save Conflicts

    Resolving Cloud Save Conflicts IN THIS DOCUMENT Get Notified of Conflicts Handle the Simple Cases De ...

  10. hdu26道动态规划总结

    前言:我们队的dp一直是我在做,说不上做的很顺,有些可以做,有些不能做.到现在为止,做dp题目也有七八十道了,除了背包问题的题目我可以说有百分之七八十的把握ac的话,其他类型的dp,还真没有多大把握. ...

随机推荐

  1. Windows下使用python库 curses遇到错误消息的解决方案

    在Windows系统下执行python应用时,有时会遇到错误信息: ModuleNotFoundError: No module named '_curses'. 然而查看Windows系统里pyth ...

  2. SEO 第十章

    SEO第十章 本次课目标: 1.  站外优化方案计划 2.  常见的SEO作弊手段(黑帽) 3.  百度站长平台的使用 4.  网站流量提升和转化率提升 一.站外优化方案计划 友情链接 权重相当.行业 ...

  3. 11gR2集群件任务角色分离(Job Role Separation)简介

       从11gR2版本开始,Oracle推荐使用不同的操作系统用户安装GI和数据库软件,例如:使用grid用户安装GI,使用Oracle用户安装数据库软件.当然,用户还是可以使用Oracle用户安装G ...

  4. Bootstrap学习笔记之Nestable可拖拽树结构

    Nestable是基于Bootstrap的一个可拖拽的树结构表现插件. 下面粗略的介绍一下它的用法,只作为学习参考,如有不合适之处,请各位凑合看. 下图是我在现在系统中用到的Nestable,对系统模 ...

  5. qobject_cast

    void QLadderDiagramItem::GetMainForm(DoType sourceType){ for each (QWidget *w in qApp->topLevelWi ...

  6. C++ new delete(二)

    C++基础遗漏:new和delete 我记得当年学习C++基础的时候,老师曾经告诉我们:一般来说new和delete要成对出现,在使用完new申请的内存后要马上释放.我相信持这种说法的人不止我们老师一 ...

  7. swift中的as?和as!

    as操作符用来把某个实例转型为另外的类型,由于实例转型可能失败,因此Swift为as操作符提供了两种形式:选项形式as?和强制形式as 选项形式(as?)的操作执行转换并返回期望类型的一个选项值,如果 ...

  8. react-native 在新版Xcode(10+)中运行出现的问题: node_modules/react-native/third-party/glog-0.3.4 , C compiler cannot create executables

    报错发生在 react-native : 0.55.4 (或存在于更低的版本) 报错: ----/node_modules/react-native/third-party/glog-0.3.4': ...

  9. Android Studio中出现Gradle's dependency cache may be corrupt错误的解决办法

    起因 某次打开AS,提示升级AS,升级后,提示升级gradle,选择升级. 结果在升级gradle时耗时较久,没有耐心,点击停止升级gradle, 还是停在那里,然后关闭AS,还是没反应,启动任务管理 ...

  10. 哈理工(HUST)第八届程序设计竞赛--小乐乐的组合数

    这道题目是一道数学题,我们可以假设n为7,m为14. 这样的话我们就可以很清晰地看到7和7可以拼接在一起,这是一对,然后是7和14拼接在一起,第二对. 我们可以直接让n/7,m/7,这样就是1*2,就 ...