近期看了一篇文章《spatiograms versus histograms for region-based tracking》,在此把这篇文章的核心思想及算法推理进行整理。

空间直方图

传统直方图可视为零阶空间直方图,二阶空间直 方图包含直方图每一个bin的空间均值和协方差。这样的空间信息能获取目标更丰富的特征描写叙述。从而提高了跟踪的鲁棒性。

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">

概率密度函数

空间直方图的空间信息默认服从的是高斯分布,对于两个直方图推断是否相似也是依据多高斯(GMM)的分布特征进行推断的。

高斯分布:即正态分布的概率密度函数均值为μ方差 为σ2 (或标准差σ)是高斯函数的一个实例:

当中σ越小,分布越集中,σ越大。分布越分散。假设一个随机变量X服从这个分布。我们写作 X ~ N(μ,σ2). 假设μ = 0而且σ =
1,这个分布被称为标准正态分布,这个分布可以简化为

多维高斯分布公式:

D表示X的维数。表示D*D的协方差矩阵,定义为

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">

空间直方图与GMMs相似,但GMMs从区域I中得到的多高斯权重和做为相似值,而空间直方图仅仅是从一个高斯分布的区域中获取值。

GMMs在它们的区域中是非參数的。它们的范围区间是半參数的,直方图在它们的区域和范围中都是无參数的,空间直方图在它们的范围内是无參数的,但它们的区间是半參数的。

Meanshift

Meanshift算法是基于模式匹配的目标跟踪算法,首先手动选取跟踪窗体,依据颜色直方图分布计算核函数加权下的目标模板,在兴许跟踪帧中用同样方法得到选定区域的直方图分布。统计迭代计算,使得每个点向两个分布相似性最大的方向漂移。

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">







watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">




这些就是这篇文章算法的核心思想,之后我会把实现代码贴出来。

基于空间直方图meanshift跟踪的更多相关文章

  1. matlab工具箱之人眼检测+meanshift跟踪算法--人眼跟踪

    Viola-Jones 人眼检测算法+meanshift跟踪算法 这次的代码是对视频中的人眼部分进行检测加跟踪,检测用的是matlab自带的人眼检测工具箱 下面是matlab官网介绍这个算法的一些东西 ...

  2. 使用Minifly打造基于视觉感知的跟踪无人机

    前言:无人机和人工智能现在是非常热门的话题,将两者结合起来是一个比较好的创意,本文介绍一种可行的解决方案来实现基于视觉感知的跟踪无人机.从零开始搭建无人机系统工作量和难度(以及钱)都是非常大的,所以在 ...

  3. 浏览器禁用Cookie,基于Cookie的会话跟踪机制失效的解决的方法

    当浏览器禁用Cookies时.基于Cookie的会话跟踪机制就会失效.解决的方法是利用URL重写机制跟踪用户会话. 在使用URL重写机制的时候须要注意.为了保证会话跟踪的正确性,全部的链接和重定向语句 ...

  4. 基于SkyWalking的分布式跟踪系统 - 环境搭建

    前面的几篇文章我们聊了基于Metrics的监控Prometheus,利用Prometheus和Grafana可以全方位监控你的服务器及应用的性能指标,在出现异常时利用Alertmanager告警及时通 ...

  5. 基于SkyWalking的分布式跟踪系统 - 微服务监控

    上一篇文章我们搭建了基于SkyWalking分布式跟踪环境,今天聊聊使用SkyWalking监控我们的微服务(DUBBO) 服务案例 假设你有个订单微服务,包含以下组件 MySQL数据库分表分库(2台 ...

  6. 基于SkyWalking的分布式跟踪系统 - 异常告警

    通过前面2篇文章我们搭建了SW的基础环境,监控了微服务,能了解所有服务的运行情况.但是当出现服务响应慢,接口耗时严重时我们需要立即定位到问题,这就需要我们今天的主角--监控告警,同时此篇也是SW系列的 ...

  7. 自适应尺寸变化的meanshift跟踪

    近期在看meanshift方面的文章,看了一篇博文对这篇文章<Robust scale-adaptive meanshift for tracking>寄予非常高的评价,所以把这篇文章简要 ...

  8. 使用Opencv中均值漂移meanShift跟踪移动目标

    Mean Shift均值漂移算法是无参密度估计理论的一种,无参密度估计不需要事先知道对象的任何先验知识,完全依靠训练数据进行估计,并且可以用于任意形状的密度估计,在某一连续点处的密度函数值可由该点邻域 ...

  9. 高精地图技术专栏 | 基于空间连续性的异常3D点云修复技术

    1.背景 1.1 高精资料采集 高精采集车是集成了测绘激光.高性能惯导.高分辨率相机等传感器为一体的移动测绘系统.高德高精团队经过多年深耕打造的采集车,具有精度高.速度快.数据产生周期短.自动化程度高 ...

随机推荐

  1. JSON parse error: Can not construct instance of model.Class: no suitable constructor found

    reference:http://blog.csdn.net/qq_33642117/article/details/51909346 当类中没有定义构造函数时,系统会指定给该类加上一个空参数的构造函 ...

  2. Go:反射

    一.通过反射获取类型信息 在 Go 程序中,使用 reflect.TypeOf() 函数可以获得任意值的类型对象(reflect.Type),程序通过类型对象可以访问任意值的类型信息. package ...

  3. tornado框架基础09-cookie和session

    01 cookie 在上节,我们简单了解了登录过程,但是很明显,每次都需要登录,但是在平常逛网站的只需要登录一次,那么网站是如何记录登录信息的呢? 有没有什么办法可以让浏览器记住登录信息,下次再次打开 ...

  4. MySQL学习点滴 --分区表

    写在前面:笔者之前也有一些MySQL方面的笔记,其中部分内容来自极客时间中丁奇老师的课程.后经园友提醒,这个做法确实不太好.之后我仍会继续更新一下MySQL方面的学习记录,在自己理解之后用自己的方式记 ...

  5. Activiti数据表

    --1:资源库流程规则表SELECT * FROM JEESITE.act_re_deployment --部署信息表SELECT * FROM JEESITE.act_re_model --流程设计 ...

  6. 优化子查询sql语句为内连接

    背景: 希望提高查询的效率,从sql语句中频繁出现的子查询入手. 数据表如下:Student表中的CityCode对应于City表中的Code. Student表:                   ...

  7. xtu read problem training 3 A - The Child and Homework

    The Child and Homework Time Limit: 1000ms Memory Limit: 262144KB This problem will be judged on Code ...

  8. isNaN+parseFloat进行统计以及对NaN的处理【JS验证数字】

    今天遇到这么一个需求: 对数据进行统计,可是在统计的时候parseFloat的时候出来一个NaN.后来用isNaN判断,如果是NaN,就给其设置一个初值. 先看对两个方法的解释 parseFloat: ...

  9. excludepathpatterns 无效

    踩坑了,调了好久才调出来. 原因:  访问的API /XXX 已经转换为 /error 了.  把“/error” 也加入 excludepathpatterns 里面即可.

  10. Java使用IText(VM模版)导出PDF

    Java使用IText(VM模版)导出PDF: public String createPDF(ProjectManageBase projectManageBase) { Map map = new ...