发现是一个快速幂,然而过不去。

怎么办呢?

1.十进制快速幂,可以用来练习卡时。

2.费马小定理,如果需要乘方的地方,可以先%(p-1)再计算,其他地方需要%p,所以需要保存两个数。

然后就是分类讨论a是否为1(等比数列求和时要求a不为1)

然后就是递推了。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; #define F(i,j,k) for (ll i=j;i<=k;++i)
#define D(i,j,k) for (ll i=j;i>=k;--i)
#define ll long long
const ll md=1000000007;
ll n1,m1,n2,m2,a,b,c,d,len,ans;
char s1[1000005],s2[1000005];
ll qpow(ll a,ll b)
{
ll ret=1;
while (b)
{
if (b&1) (ret*=a)%=md;
(a*=a)%=md;
b>>=1;
}
return ret;
}
ll inv(ll a)
{return qpow(a,md-2);}
int main()
{
scanf("%s",s1+1);
scanf("%s",s2+1);
len=strlen(s1+1); F(i,1,len) n1=(n1*10+s1[i]-'0')%(md-1);
len=strlen(s2+1); F(i,1,len) m1=(m1*10+s2[i]-'0')%(md-1);
len=strlen(s1+1); F(i,1,len) n2=(n2*10+s1[i]-'0')%md;
len=strlen(s2+1); F(i,1,len) m2=(m2*10+s2[i]-'0')%md;
scanf("%lld%lld%lld%lld",&a,&b,&c,&d);
if (a!=1)
{
ll e,f;
e=(qpow(a,m1-1)*c)%md;
f=(((((qpow(a,m1-1)-1+md)%md*b)%md*c)%md*inv(a-1))%md+d)%md;
if (e==1)
{
ll tmp=(1LL+f*n2)%md;
ans=((tmp-d+md)%md*inv(c))%md;
}
else
{
ll tmp=qpow(e,n1)+(((qpow(e,n1)-1+md)%md*f)%md*inv((e-1+md)%md))%md;
ans=((tmp-d+md)%md*inv(c))%md;
}
}
else
{
ll e,f;
e=c; f=(((c*b)%md*(m2-1))%md+d)%md;
if (e==1)
{
ll tmp=(1LL+f*n2)%md;
ans=((tmp-d+md)%md*inv(c))%md;
}
else
{
ll tmp=qpow(e,n1)+(((qpow(e,n1)-1+md)%md*f)%md*inv((e-1+md)%md))%md;
ans=((tmp-d+md)%md*inv(c))%md;
}
}
printf("%lld\n",ans);
}

  

BZOJ 3240 [Noi2013]矩阵游戏 ——费马小定理 快速幂的更多相关文章

  1. BZOJ 3240([Noi2013]矩阵游戏-费马小定理【矩阵推论】-%*s-快速读入)

    3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec   Memory Limit: 256 MB Submit: 123   Solved: 73 [ Submit][ St ...

  2. bzoj3240 [Noi2013]矩阵游戏——费马小定理+推式子

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3240 n 和 m 太过巨大,不难想到应该用费马小定理什么的来缩小范围: 总之就是推式子啦,看 ...

  3. hdu-5667 Sequence(矩阵快速幂+费马小定理+快速幂)

    题目链接: Sequence Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Others) ...

  4. hdu4549(费马小定理 + 快速幂)

    M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = a F[1] = b F[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n ...

  5. 数论 --- 费马小定理 + 快速幂 HDU 4704 Sum

    Sum Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=4704 Mean: 给定一个大整数N,求1到N中每个数的因式分解个数的 ...

  6. 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)

    题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...

  7. BZOJ_[HNOI2008]_Cards_(置换+Burnside引理+乘法逆元+费马小定理+快速幂)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1004 共n个卡片,染成r,b,g三种颜色,每种颜色的个数有规定.给出一些置换,可以由置换得到的 ...

  8. hdu_4869(费马小定理+快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4869 Turn the pokers Time Limit: 2000/1000 MS (Java/O ...

  9. HDU 4704 Sum(隔板原理+组合数求和公式+费马小定理+快速幂)

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=4704 Problem Description   Sample Input 2 Sample Outp ...

随机推荐

  1. ARM指令解析

    今天我来总结一下arm指令的学习,今天我不会对所有的arm指令进行一一的解析,在这里希望大家去看arm汇编手册,这个手册的中文版我放在了http://download.csdn.net/detail/ ...

  2. uvm_verision——告诉我你几岁了?

    uvm_version 定义了UVM相关的版本信息,而具体的uvm_revision则是通过在src/macros/uvm_version_defines.svh实现的. uvm_revision_s ...

  3. 分布式定时任务的redis锁实现

    一个web项目如果部署为分布式时,平时常见的定时服务在一定的间隔时间内,可能出现多次重复调用的问题.而此时由于是不同容器之间的竞争,因此需要容器级别的锁 Redis为单进程单线程模式,采用队列模式将并 ...

  4. iOS面试题 第一天

    今天上午,下午分别面试了两家公司.上午是一家互联网公司,气氛还比较好,是我比较喜欢的.技术这块是直接机试,主要是给了些BUG让我修复,整个过程还算顺利.下午去了一家大型的证券公司.整理技术问题如下: ...

  5. Codeforces Round #273 (Div. 2)-A. Initial Bet

    http://codeforces.com/contest/478/problem/A A. Initial Bet time limit per test 1 second memory limit ...

  6. bootstrap历练实例: 垂直胶囊式的导航菜单

    <!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...

  7. CentOS 6.6 安装nfs网络文件系统

    http://www.linuxidc.com/Linux/2015-06/119370.htm   ####搭建 http://blog.csdn.net/liumiaocn/article/det ...

  8. ios 团购信息客户端demo(三)

    接上二篇的内容,今天我们就来介绍一下如何将解析出来的数据放入AQGridView中显示出来,因为我们的工程中已经将AQGridView导入了,所以我们在KKFirstViewController中直接 ...

  9. sha1、base64、ase加密

    <!DOCTYPE html><html><head><title>sha1.base64.ase加密</title><meta ch ...

  10. 【贪心】bzoj1045: [HAOI2008] 糖果传递

    很妙的贪心思考过程 Description 有n个小朋友坐成一圈,每人有ai个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为1. Input 第一行一个正整数nn<=1'000'0 ...