UVA 1468

Description

 

Mr. Kim is planning to open a new restaurant. His city is laid out as a grid with size MxM. Therefore, every road is horizontal or vertical and the horizontal roads (resp., the vertical roads) are numbered from 0 to M - 1. For profitability, all restaurants are located near road junctions. The city has two big apartments which are located on the same horizontal road. The figure below shows an example of a city map with size 11 x 11. A circle represents an existing restaurant and a circle labeled with `A' or `B' represents the location of an apartment. Notice that a restaurant is already located at each apartment. Each road junction is represented by the coordinate of the ordered pair of a vertical road and a horizontal road. The distance between two locations (x1y1) and (x2y2) is computed as | x1 - x2| + |y1 - y2|. In the figure below, the coordinates of A and B are (0, 5) and (10, 5), respectively.

Mr. Kim knows that the residents of the two apartments frequently have a meeting. So, he thinks that the best location of a new restaurant is halfway between two apartments. Considering lease expenses and existing restaurants, however, he can't select the optimal location unconditionally. Hence he decides to regard a location satisfying the following condition as a good place. Let dist(pq) be the distance between p and q.

A location p is a good place if for each existing restaurant's location qdist(pA) < dist(qA) or dist(pB) < dist(qB). In other words, p is not a good place if there exists an existing restaurant's location q such that dist(pA)dist(qA) and dist(pB)dist(qB).

In the above figure, the location (7, 4) is a good place. But the location p = (4, 6) is not good because there is no apartment which is closer to p than the restaurant at q = (3, 5), i.e., dist(pA) = 5dist(qA) = 3 and dist(pB) = 7dist(qB) = 7. Also, the location (0, 0) is not good due to the restaurant at (0, 5). Notice that the existing restaurants are positioned regardless of Mr. Kim's condition.

Given n locations of existing restaurants, write a program to compute the number of good places for a new restaurant.

Input

Your program is to read the input from standard input. The input consists of T test cases. The number of test cases T is given in the first line of the input. Each test case starts with a line containing two integers M and n ( 2M60, 000 and 2n50, 000), which represent the size of a city map and the number of existing restaurants, respectively. The (i + 1)-th line of a test case contains two integers xi and yi (i = 1, 2,..., n and 0xiyi < M), which represents the coordinate of the i-th existing restaurant. Assume that all restaurants have distinct coordinates and that the two apartments A and B are positioned at the locations of 1-st restaurant and 2-nd restaurant. Notice that A and B are placed on the same horizontal line.

Output

Your program is to write to standard output. Print exactly one line for each test case. Print the number of good places which can be found in a given city map.

The following shows sample input and output for two test cases.

Sample Input

2
6 3
1 3
4 3
0 2
11 11
0 5
10 5
4 9
2 8
7 8
5 6
3 5
5 3
3 2
7 2
9 1

Sample Output

2
16 题意:
在一个m*m方格的地图上有n个餐馆,其中有最左和最右两个公寓a,b,公寓里面也有一个餐馆,现在你需要确定有多少个好位置,好位置的标准是没有其他的餐馆会比这个位置离a近同时也离b近
思路:
加入已经有一个餐馆(x,y),那么同x的其他点只要离a的y相对距离更近,那么这些点就是可行的,再考虑到已经存在的所有餐馆都会对你新选的地址造成影响,所以你可以假设位置,比如存在(x-1,y)那么你可以把它假定为存在一点f(x-1)+1是对右边造成的影响
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstdio>
#define maxn 70000
using namespace std;
struct node
{
int x,y;
}a,b,c;
int h;
int f[maxn];
const int INF=1e9;
int main()
{
int m,n;
int T;
cin>>T;
while(T--)
{
fill(f,f+maxn,INF);
cin>>m>>n;
cin>>a.x>>a.y>>b.x>>b.y;
h=b.y;
for(int i=;i<n-;i++)
{
cin>>c.x>>c.y;
f[c.x]=min(f[c.x],abs(c.y-h));
}
f[a.x]=f[b.x]=;int ans=;
for(int i=a.x+;i<b.x;i++)
f[i]=min(f[i],f[i-]+);
for(int j=b.x-;j>a.x;j--)
f[j]=min(f[j],f[j+]+);
for(int k=a.x+;k<b.x;k++)
if(f[k]!=)
{
if(f[k]-<=h&&f[k]-<=m-h-) ans+=f[k]*-;
else
{
if(f[k]-<=h&&f[k]->=m-h-) ans+=f[k]+m-h-;
else
if(f[k]-<=m-h-&&f[k]->=h)
ans+=f[k]+h-;
else
ans+=m-;
}
ans++;
}
cout<<ans<<endl;
}
return ;
}

A - Restaurant的更多相关文章

  1. CodeForces - 261B Maxim and Restaurant

    http://codeforces.com/problemset/problem/261/B 题目大意:给定n个数a1-an(n<=50,ai<=50),随机打乱后,记Si=a1+a2+a ...

  2. Flo's Restaurant[HDU1103]

    Flo's Restaurant Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  3. Codeforces Testing Round #12 B. Restaurant 贪心

    B. Restaurant Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/597/problem ...

  4. HDU-2368 Alfredo's Pizza Restaurant

    http://acm.hdu.edu.cn/status.php Alfredo's Pizza Restaurant Time Limit: 1000/1000 MS (Java/Others)   ...

  5. hdoj 4883 TIANKENG’s restaurant【贪心区间覆盖】

    TIANKENG’s restaurant Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/O ...

  6. hdu2368Alfredo's Pizza Restaurant

    Problem Description Traditionally after the Local Contest, judges and contestants go to their favour ...

  7. HDOJ 4883 TIANKENG’s restaurant

    称号: TIANKENG's restaurant Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K (Ja ...

  8. Restaurant

    Restaurant Time Limit:4000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u Submit  ...

  9. 九校联考_24OI——餐馆restaurant

    凉心模拟D1T1--最简单的一道题 TAT 餐馆(restaurant) 题目背景 铜企鹅是企鹅餐馆的老板,他正在计划如何使得自己本年度收益增加. 题目描述 共有n 种食材,一份食材i 需要花ti 小 ...

  10. Codeforces828 A. Restaurant Tables

    A. Restaurant Tables time limit per test 1 second memory limit per test 256 megabytes input standard ...

随机推荐

  1. bzoj 1914: [Usaco2010 OPen]Triangle Counting 数三角形【叉积+极角排序+瞎搞】

    参考:https://blog.csdn.net/u012288458/article/details/50830498 有点神啊 正难则反,考虑计算不符合要求的三角形.具体方法是枚举每个点,把这个点 ...

  2. bzoj 2726: [SDOI2012]任务安排【cdq+斜率优化】

    cdq复健.jpg 首先列个n方递推,设sf是f的前缀和,st是t的前缀和: \[ f[i]=min(f[j]+s*(sf[n]-sf[j])+st[i]*(sf[i]-sf[j])) \] 然后移项 ...

  3. bzoj 3390: [Usaco2004 Dec]Bad Cowtractors牛的报复【最大生成树】

    裸的最大生成树,注意判不连通情况 #include<iostream> #include<cstdio> #include<algorithm> using nam ...

  4. php生成唯一订单号的方法

    第一种 $danhao = date('Ymd') . str_pad(mt_rand(1, 99999), 5, '0', STR_PAD_LEFT); 第二种 $danhao = date('Ym ...

  5. linux学习之路4 系统目录架构

    linux树状文件系统结构 bin(binary) 保存可执行文件 也就是保存所有命令 boot 引导目录 保存所有跟系统有关的引导程序 其中Vmlinux文件最为重要,是系统内核 dev 保存所有的 ...

  6. 牛客练习赛17-A-长方体

    题目描述 给出共享长方体一个顶点的三个面的面积,求它十二条边的边长和. 输入描述: 一行三个整数a, b, c表示面积(1 <= a, b, c <= 10000). 输出描述: 一行一个 ...

  7. Http协议对格式、请求头、方法

    ######### #概览 ######### 超文本传输协议(Http: Hyper Text Transfer Protocol) :用于发送WWW方式的数据.采用TCP/IP协议,是一个无状态协 ...

  8. Integer / BigInteger / BigDecimal 方法

    import java.math.BigDecimal; import java.math.*; public class Main{ public static void main(String[] ...

  9. 通过机智云APP来学习安卓

    效果非常之好,安卓6.0之后就进行了动态授权.按照网上的视频一步一步调试的非常成功,非常舒服.

  10. springboot项目中,@transactional 无效

    问题: springboot项目,依然是使用jpa.Hibernate来操作mysql,涉及到数据库的操作,就少不了事务.写了一个接口,用来测试@Transaction注解的作用,发现没有效果 分析: ...