题意:给定一些点(xi,yi)(xj,yj)满足:i<j,xi<xj,yi>yj。用下面的连起来,使得所有边的长度最小?

题解:直接给出吧

f[i][j]=min(f[i][k]+f[k+1][j]+cost(i,j)

cost(i,j)=a[k].y-a[j].y+a[k+1].x-a[i].x;

明显了吧

证明一下,搞一搞,四边形性质就出来了,模板题吧。

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#define N 1007
#define M 500007
#define inf 2000000009
using namespace std; int n;
int f[N][N],s[N][N];
struct Node{int x,y;}a[M]; int cost(int i,int j,int k)
{
if (k>=j) return inf;
return a[k].y-a[j].y+a[k+].x-a[i].x;
}
int main()
{
while (~scanf("%d",&n))
{
for (int i=;i<=n;i++)
scanf("%d%d",&a[i].x,&a[i].y);
for (int i=;i<=n;i++)
s[i][i]=i;
memset(f,,sizeof f);
for (int L=;L<=n;L++)
for (int i=;i+L-<=n;i++)
{
int j=L+i-;f[i][j]=inf;
for (int k=s[i][j-];k<=s[i+][j];k++)
{
int tmp=f[i][k]+f[k+][j]+cost(i,j,k);
if (tmp<f[i][j]) f[i][j]=tmp,s[i][j]=k;
}
}
printf("%d\n",f[][n]);
}
}

hdu3516 Tree Construction (四边形不等式)的更多相关文章

  1. [HDU3516] Tree Construction [四边形不等式dp]

    题面: 传送门 思路: 这道题有个结论: 把两棵树$\left[i,k\right]$以及$\left[k+1,j\right]$连接起来的最小花费是$x\left[k+1\right]-x\left ...

  2. HDU 3516 Tree Construction (四边形不等式)

    题意:给定一些点(xi,yi)(xj,yj)满足:i<j,xi<xj,yi>yj.用下面的连起来,使得所有边的长度最小? 思路:考虑用区间表示,f[i][j]表示将i到j的点连起来的 ...

  3. hdu3516 Tree Construction (区间dp+四边形优化)

    构造方法肯定是把相邻两个点连到一起,变成一个新点,然后再把新点和别的点连到一起.... 设f[i,j]为把第i到j个点都连到一起的代价,那么答案就是f[1,n] f[i,j]=min{f[i,k]+f ...

  4. hdu3516 Tree Construction

    Problem Description Consider a two-dimensional space with a set of points (xi, yi) that satisfy xi & ...

  5. HDOJ 3516 Tree Construction 四边形优化dp

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=3516 题意: 大概就是给你个下凸包的左侧,然后让你用平行于坐标轴的线段构造一棵树,并且这棵树的总曼哈顿 ...

  6. HDU.3516.Tree Construction(DP 四边形不等式)

    题目链接 贴个教程: 四边形不等式学习笔记 \(Description\) 给出平面上的\(n\)个点,满足\(X_i\)严格单增,\(Y_i\)严格单减.以\(x\)轴和\(y\)轴正方向作边,使这 ...

  7. HDU 3516 DP 四边形不等式优化 Tree Construction

    设d(i, j)为连通第i个点到第j个点的树的最小长度,则有状态转移方程: d(i, j) = min{ d(i, k) + d(k + 1, j) + p[k].y - p[j].y + p[k+1 ...

  8. 【转】斜率优化DP和四边形不等式优化DP整理

    (自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...

  9. 省选算法学习-dp优化-四边形不等式

    嗯......四边形不等式的确长得像个四边形[雾] 我们在dp中,经常见到这样一类状态以及转移方程: 设$dp\left[i\right]\left[j\right]$表示闭区间$\left[i,j\ ...

随机推荐

  1. POJ1150he Last Non-zero Digit(组合)

    链接 题意从尾部找第一个非0的数 这样就可以考虑下怎样会形成0  这个都知道 只有因子2和因子5相遇会形成0 那这样可以先把所有的2和5先抽出来,这样就保证了其它的数相乘就不会再出现0了 这样就可以转 ...

  2. asp.net 线程批量导入数据,ajax获取执行状态

    最近做了一个批量导入功能,长时间运行,没个反馈状态,很容易让人看了心急,产生各种臆想!为了解决心里障碍,写了这么个功能. 通过线程执行导入,并把正在执行的状态存入session,既共享执行状态,通过a ...

  3. poj1724 ROADS

    题意: N个城市,编号1到N.城市间有R条单向道路.每条道路连接两个城市,有长度和过路费两个属性.Bob只有K块钱,他想从城市1走到城市N.问最短共需要走多长的路.如果到不了N,输出-12<=N ...

  4. 【经验总结】关于使用某些第三方插件库元素设置display:none后重新show不显示的问题;(display、opacity、宽高0的使用场景)

    display:none 直接取消元素所占用的位置(但是元素还是存在的),后面元素看他就相当于不存在了: opacity:0  隐藏,但是其依旧占用位置: height.width:0 和displa ...

  5. CCF|最大波动|Java|100

    import java.util.*; public class Main { public static void main(String[] args) { Scanner in = new Sc ...

  6. 在colab上运行style-transfer

    1,  打开chrome浏览器,输入以下网址,打开风格转换主文件 https://colab.research.google.com/github/Hvass-Labs/TensorFlow-Tuto ...

  7. IOS开发之关于UIButton点击没有响应问题

    1.如果一个UIButton的frame超出父视图的frame,UIButton还是可以显现的,但响应不了点击事件了,当开发中,遇到UIButton点击没有响应问题时,我们需要输出btn及它父视图的f ...

  8. phpstorm 格式化代码

    MAC 安装phpcs.phpcbf composer global require 'squizlabs/php_codesniffer=*' Changed current directory t ...

  9. vue >>> 编译失败问题 loader 待解决( iview vue脚手架生成)

    vue >>> 编译失败问题 loader 待解决 用vue iview 脚手架 来一次试试~

  10. Linux Shell参数扩展(Parameter Expansion)

    Shell Command Language在线文档: http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html ...