题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2069

Problem Description

Suppose there are 5 types of coins: 50-cent, 25-cent, 10-cent, 5-cent, and 1-cent. We want to make changes with these coins for a given amount of money.
For example, if we have 11 cents, then we can make changes with one 10-cent coin and one 1-cent coin, or two 5-cent coins and one 1-cent coin, or one 5-cent coin and six 1-cent coins, or eleven 1-cent coins. So there are four ways of making changes for 11 cents with the above coins. Note that we count that there is one way of making change for zero cent.
Write a program to find the total number of different ways of making changes for any amount of money in cents. Your program should be able to handle up to 100 coins.

Input

The input file contains any number of lines, each one consisting of a number ( ≤250 ) for the amount of money in cents.

Output

For each input line, output a line containing the number of different ways of making changes with the above 5 types of coins.

Sample Input

11
26

Sample Output

4
13

解题思路:这道题可以用暴力枚举直接解决。枚举每种硬币的数量为0~n/这种币值即可,为了避免TLE超时,最后一种硬币换成表达式来判断,用num来计数情况,其中注意所有币值的总数量<=100。

AC代码一(直接暴力):

 #include<bits/stdc++.h>
using namespace std;
int main()
{
int n,num;
while(cin>>n){
num=;
for(int a=;a*<=n;a++){
for(int b=;b*<=n;b++){
for(int c=;c*<=n;c++){
for(int d=;d*<=n;d++){//剩下一步由减法来,避免超时
if(n-a*-b*-c*-d*>= && a+b+c+d+n-a*-b*-c*-d*<=)num++;
}
}
}
}
cout<<num<<endl;
}
return ;
}

AC代码二之dp:先贴一下此题的思路:题解报告:hdu 1284 钱币兑换问题(简单数学orDP)这题就是多加了一个维度,因为题目中规定了硬币的数量最多取100个,因此定义dp[k][j]表示前k个硬币组成钱j的总方案数,那么易得状态转移方程:dp[k][j]+=dp[k-1][j-a[i]],意思是减去当前某种一个币值,那么就会增加前k-1个硬币组成钱j-a[i]的方案数dp[k-1][j-a[i]](对于同一种硬币a[i]来讲)。预处理打表,然后累加用k(k∈[0,100])个硬币组成钱n的所有方案数即为最终的方案总数。注意:①初始化dp[0][0]=1,表示前0个硬币组成钱0的方案数为1(原因和上面链接博文里的一样)答案要累加不超过i:0-->100得到的总方案数,一定要从0开始累加,因为有0个硬币时的方案数。

 #include<bits/stdc++.h>
using namespace std;
int main(){
int n,sum,a[]={,,,,},dp[][];
memset(dp,,sizeof(dp));dp[][]=;
for(int i=;i<;++i)//种数
for(int k=;k<=;++k)//硬币总数不超过100
for(int j=a[i];j<=;++j)
dp[k][j]+=dp[k-][j-a[i]];
while(cin>>n){
sum=;
for(int k=;k<=;++k)sum+=dp[k][n];//累加用0~100组成钱n的所有方案数
cout<<sum<<endl;
}
return ;
}

题解报告:hdu 2069 Coin Change(暴力orDP)的更多相关文章

  1. HDU 2069 Coin Change

    Coin Change Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total S ...

  2. hdu 2069 Coin Change(完全背包)

    Coin Change Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  3. HDU 2069 Coin Change(完全背包变种)

    题意:给你5种银币,50 25 10 5 1,问你可以拼成x的所有可能情况个数,注意总个数不超过100个 组合数问题,一看就是完全背包问题,关键就是总数不超过100个.所有我们开二维dp[k][j], ...

  4. HDOJ 2069 Coin Change(母函数)

    Coin Change Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  5. hdu2069(Coin Change)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2069 Coin Change Time Limit: 1000/1000 MS (Java/Other ...

  6. 题解报告:hdu 1398 Square Coins(母函数或dp)

    Problem Description People in Silverland use square coins. Not only they have square shapes but also ...

  7. 题解报告:hdu 1028 Ignatius and the Princess III(母函数or计数DP)

    Problem Description "Well, it seems the first problem is too easy. I will let you know how fool ...

  8. 【LeetCode】518. Coin Change 2 解题报告(Python)

    [LeetCode]518. Coin Change 2 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目 ...

  9. JSU省赛队员选拔赛个人赛1(Coin Change、Fibbonacci Number、Max Num、单词数、无限的路、叠筐)

    JSU省赛队员选拔赛个人赛1 一.题目概述: A.Coin Change(暴力求解.动态规划)     B.Fibbonacci Number(递推求解) C.Max Num(排序.比较) D.单词数 ...

随机推荐

  1. ubuntu12.04安装搜狗输入法记录

    http://blog.sina.com.cn/s/blog_66fa66650101akip.html 看了http://www.cnblogs.com/A-Song/archive/2013/04 ...

  2. Desert King (poj 2728 最优比率生成树 0-1分数规划)

    Language: Default Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 22113   A ...

  3. libpython2.7.so.1.0: cannot open shared object file: No such file or directory

    解决方法如下: 1.编辑      vi /etc/ld.so.conf  如果是非root权限帐号登录,使用 sudo vi /etc/ld.so.conf  添加上python2.7的lib库地址 ...

  4. Codefoces 436 B. Om Nom and Spiders

    纯属练习JAVA.... B. Om Nom and Spiders time limit per test 3 seconds memory limit per test 256 megabytes ...

  5. Win7 Windows Update更新的文件默认在哪个位置

    C:\Windows\SoftwareDistribution\download    

  6. 纯C语言实现简单封装继承机制

    0 继承是OO设计的基础 继承是OO设计中的基本部分,也是实现多态的基础,C++,C#,Objective-C.Java.PHP.JavaScript等为OO而设计的语言,其语言本身对实现继承提供了直 ...

  7. python实现接口自动化

    一.总述 Postman:功能强大,界面好看响应格式自主选择,缺点支持的协议单一且不能数据分离,比较麻烦的还有不是所有的公司都能上谷歌SoupUI:支持多协议(http\soup\rest等),能实现 ...

  8. linux 【第五篇】特殊权限及定时任务

    特殊权限 [root@VM_141_154_centos ~]# ls -ld /tmp drwxrwxrwt. 8 root root 4096 Apr 5 08:11 /tmp /tmp/ 公共目 ...

  9. 自己写的Android端HttpUtil工具类

    package com.sxt.jcjd.util; import java.io.IOException; import java.io.UnsupportedEncodingException; ...

  10. flask的CBV,flash,Flask-Session,及WTForms-MoudelForm

    1,CBV: from flask import vews class LoginView(views.MethodView): def get(self): return "雪雪其实也很好 ...