A school bought the first computer some time ago(so this computer's id is 1). During the recent years the school bought N-1 new computers. Each new computer was connected to one of settled earlier. Managers of school are anxious about slow functioning of the net and want to know the maximum distance Si for which i-th computer needs to send signal (i.e. length of cable to the most distant computer). You need to provide this information. 

Hint: the example input is corresponding to this graph. And from the graph, you can see that the computer 4 is farthest one from 1, so S1 = 3. Computer 4 and 5 are the farthest ones from 2, so S2 = 2. Computer 5 is the farthest one from 3, so S3 = 3. we also get S4 = 4, S5 = 4.

Input

Input file contains multiple test cases.In each case there is natural number N (N<=10000) in the first line, followed by (N-1) lines with descriptions of computers. i-th line contains two natural numbers - number of computer, to which i-th computer is connected and length of cable used for connection. Total length of cable does not exceed 10^9. Numbers in lines of input are separated by a space.

Output

For each case output N lines. i-th line must contain number Si for i-th computer (1<=i<=N).

Sample Input

5
1 1
2 1
3 1
1 1

Sample Output

3
2
3
4
4
题目大意:
给定n,代表n台电脑,编号为1的是最初始的电脑,下面n-1对数字,分别编号为2~n的电脑相连电脑的编号与长度。
输出n行,求与第i台电脑最远的电脑的距离。
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
int n,dp[],pre[];
struct edge
{
int u,v,w,p;///u与v电脑相连,长度w,u对应的上一条边
edge(){}
edge(int u,int v,int w,int p):u(u),v(v),w(w),p(p){}
}e[];
int dfs(int u,int p)
{
int ans=;
for(int i=pre[u];i!=-;i=e[i].p)
{
int v=e[i].v;
if(v==p) continue;
if(!dp[i])///没更新过
dp[i]=dfs(v,u)+e[i].w;
ans=max(ans,dp[i]); }
return ans;
}
int main()
{
while(cin>>n)
{
memset(dp,,sizeof dp);
memset(pre,-,sizeof pre);
int x=;
for(int i=,v,w;i<=n;i++)
{
cin>>v>>w;
e[x]=edge(i,v,w,pre[i]);
pre[i]=x++;
e[x]=edge(v,i,w,pre[v]);
pre[v]=x++;
}
for(int i=;i<=n;i++)
cout<<dfs(i,-)<<'\n';
}
return ;
}
 

Computer (树形DP)的更多相关文章

  1. HDU 2196.Computer 树形dp 树的直径

    Computer Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  2. computer(树形dp || 树的直径)

    Computer Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  3. HDU 2196 Computer 树形DP 经典题

    给出一棵树,边有权值,求出离每一个节点最远的点的距离 树形DP,经典题 本来这道题是无根树,可以随意选择root, 但是根据输入数据的方式,选择root=1明显可以方便很多. 我们先把边权转化为点权, ...

  4. HDU 2196 Computer 树形DP经典题

    链接:http://acm.hdu.edu.cn/showproblem.php? pid=2196 题意:每一个电脑都用线连接到了还有一台电脑,连接用的线有一定的长度,最后把全部电脑连成了一棵树,问 ...

  5. hdu 2196 Computer(树形DP)

    Computer Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  6. hdu 2196(Computer 树形dp)

    A school bought the first computer some time ago(so this computer's id is 1). During the recent year ...

  7. hdu-2169 Computer(树形dp+树的直径)

    题目链接: Computer Time Limit: 1000/1000 MS (Java/Others)     Memory Limit: 32768/32768 K (Java/Others) ...

  8. 【HDU 2196】 Computer (树形DP)

    [HDU 2196] Computer 题链http://acm.hdu.edu.cn/showproblem.php?pid=2196 刘汝佳<算法竞赛入门经典>P282页留下了这个问题 ...

  9. hdu 2196 Computer 树形dp模板题

    Computer Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  10. hdu 2196 Computer(树形DP经典)

    Computer Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

随机推荐

  1. Oozie是什么?

         但是,一般用Azkaban了.(具体见我写的另一篇博客:) 官网:https://oozie.apache.org/ Oozie is a workflow scheduler system ...

  2. linux给文件或目录添加apache权限

    系统环境:ubuntu11.10/apache2/php5.3.6 在LAMP环境中,测试一个简单的php文件上传功能时,发现/var/log/apache2/error.log中出现如下php警告: ...

  3. Javaweb学习笔记5—Cookie&Session

    今天来讲javaweb的第五阶段学习. Cookie和Session同样是web开发常用到的地方. 老规矩,首先先用一张思维导图来展现今天的博客内容. ps:我的思维是用的xMind画的,如果你对我的 ...

  4. Java虚拟机性能调优相关

    一.JVM内存模型及垃圾收集算法 1.根据Java虚拟机规范,JVM将内存划分为:New(年轻代)Tenured(年老代)永久代(Perm) 其中New和Tenured属于堆内存,堆内存会从JVM启动 ...

  5. postgres的强制类型转换与时间函数

    一.类型转换postgres的类型转换:通常::用来做类型转换,timestamp到date用的比较多select  now()::dateselect  now()::varchar 示例1:日期的 ...

  6. Oracle的Central Inventory和Local inventory详解

    很多朋友对Oracle的inventory信息不太了解以至遇到相关的问题不知道如何处理,这篇文章我们将详细讲解Oracle的Central Inventory (oraInventory)和Local ...

  7. Three.js模型隐藏或显示

    材质属性.visible查看Three.js文档的基类Material,可以知道材质属性.visible的作用就是控制绑定该材质的模型对象是否可见,默认值是true,LineBasicMaterial ...

  8. DROP CAST - 删除一个用户定义的类型转换

    SYNOPSIS DROP CAST (sourcetype AS targettype) [ CASCADE | RESTRICT ] DESCRIPTION 描述 DROP CAST 删除一个前面 ...

  9. uva1609 Foul Play

    思维 创造条件使一轮比赛之后仍满足1号打败至少一半,并剩下至少一个t' 紫书上的思路很清晰阶段1,3保证黑色至少消灭1半 #include<cstdio> #include<vect ...

  10. docker存储管理

    Docker 镜像的元数据 repository元数据 repository在本地的持久化文件存放于/var/lib/docker/image/overlay2/repositories.json中 ...