Farmer John's pastoral neighborhood has N farms (2 <= N <= 40,000), usually numbered/labeled 1..N. A series of M (1 <= M < 40,000) vertical and horizontal roads each of varying lengths (1 <= length <= 1000) connect the farms. A map of these farms might look something like the illustration below in which farms are labeled F1..F7 for clarity and lengths between connected farms are shown as (n):

           F1 --- (13) ---- F6 --- (9) ----- F3

| |

(3) |

| (7)

F4 --- (20) -------- F2 |

| |

(2) F5

|

F7

Being an ASCII diagram, it is not precisely to scale, of course.

Each farm can connect directly to at most four other farms via roads that lead exactly north, south, east, and/or west. Moreover, farms are only located at the endpoints of roads, and some farm can be found at every endpoint of every road. No two roads cross, and precisely one path 
(sequence of roads) links every pair of farms.

FJ lost his paper copy of the farm map and he wants to reconstruct it from backup information on his computer. This data contains lines like the following, one for every road:

There is a road of length 10 running north from Farm #23 to Farm #17 
There is a road of length 7 running east from Farm #1 to Farm #17 
...

As FJ is retrieving this data, he is occasionally interrupted by questions such as the following that he receives from his navigationally-challenged neighbor, farmer Bob:

What is the Manhattan distance between farms #1 and #23?

FJ answers Bob, when he can (sometimes he doesn't yet have enough data yet). In the example above, the answer would be 17, since Bob wants to know the "Manhattan" distance between the pair of farms. 
The Manhattan distance between two points (x1,y1) and (x2,y2) is just |x1-x2| + |y1-y2| (which is the distance a taxicab in a large city must travel over city streets in a perfect grid to connect two x,y points).

When Bob asks about a particular pair of farms, FJ might not yet have enough information to deduce the distance between them; in this case, FJ apologizes profusely and replies with "-1".

Input

* Line 1: Two space-separated integers: N and M

* Lines 2..M+1: Each line contains four space-separated entities, F1,

F2, L, and D that describe a road. F1 and F2 are numbers of

two farms connected by a road, L is its length, and D is a

character that is either 'N', 'E', 'S', or 'W' giving the

direction of the road from F1 to F2. * Line M+2: A single integer, K (1 <= K <= 10,000), the number of FB's

queries * Lines M+3..M+K+2: Each line corresponds to a query from Farmer Bob

and contains three space-separated integers: F1, F2, and I. F1

and F2 are numbers of the two farms in the query and I is the

index (1 <= I <= M) in the data after which Bob asks the

query. Data index 1 is on line 2 of the input data, and so on.

Output

* Lines 1..K: One integer per line, the response to each of Bob's

queries. Each line should contain either a distance

measurement or -1, if it is impossible to determine the

appropriate distance.

Sample Input

7 6
1 6 13 E
6 3 9 E
3 5 7 S
4 1 3 N
2 4 20 W
4 7 2 S
3
1 6 1
1 4 3
2 6 6

Sample Output

13
-1
10

Hint

At time 1, FJ knows the distance between 1 and 6 is 13. 
At time 3, the distance between 1 and 4 is still unknown. 
At the end, location 6 is 3 units west and 7 north of 2, so the distance is 10.

#include<iostream>
#include<map>
#include<string>
#include<algorithm>
#include<cstdio>
#include<queue>
#include<cstring>
#include<cmath>
#include<vector>
#include<set>
#include<queue>
#include<iomanip>
#include<iostream>
using namespace std;
#define MAXN 40003
#define INF 0x3f3f3f3f
typedef long long LL;
//曼哈顿距离,用两个rank数组表示,不再并查集中为未知
//难点在于 如何快速读取第I个指令后的信息
//将所有疑问按照指令前后顺序排序,解决的答案带着标号进入数组,最后对该数组排序后输出即可!
//NB!
int pre[MAXN],r1[MAXN],r2[MAXN],n,m,k;//r1表示南北,r2表示东西
struct node
{
int nth,from,to,info;
}a[];
struct vn
{
int nth,data;
};
vector<vn> ans;
int find(int x)
{
if(pre[x]==-)
return x;
int fx = pre[x];
pre[x] = find(fx);
r1[x] += r1[fx];
r2[x] += r2[fx];
return pre[x];
}
void mix(int x,int y,int d,bool NS)
{
int fx = find(x),fy = find(y);
if(fx!=fy)
{
pre[fy] = fx;
if(NS)
{
r1[fy] = r1[x]-r1[y]+d;
r2[fy] = r2[x]-r2[y];
}
else
{
r2[fy] = r2[x]-r2[y]+d;
r1[fy] = r1[x]-r1[y];
}
}
}
int Dis(int x,int y)
{
int fx = find(x),fy = find(y);
if(fx!=fy)
return -;
else
{
int d1 = r1[x]-r1[y],d2=r2[x]-r2[y];
if(d1<) d1 = -d1;
if(d2<) d2 = -d2;
return d1+d2;
}
}
bool cmp(node a,node b)
{
return a.info<b.info;
}
bool cmp1(vn a,vn b)
{
return a.nth<b.nth;
}
int main()
{
scanf("%d%d",&n,&m);
memset(pre,-,sizeof(pre));
memset(r1,,sizeof(r1));
memset(r2,,sizeof(r2));
int f1[MAXN],f2[MAXN],l[MAXN];
char d[MAXN];
for(int i=;i<=m;i++)
{
cin>>f1[i]>>f2[i]>>l[i]>>d[i];
}
cin>>k;
for(int i=;i<=k;i++)
{
cin>>a[i].from>>a[i].to>>a[i].info;
a[i].nth = i;
}
sort(a,a+k+,cmp);
int p = ;
vn t;
bool f;
for(int i=;i<=m;i++)
{
if(d[i]=='N'||d[i]=='S') f=true;
else f = false;
if(d[i]=='S'||d[i]=='W') l[i] = -l[i];
mix(f1[i],f2[i],l[i],f);
if(p<=k&&i==a[p].info)
{
while(p<=k&&a[p].info==i)
{
int tmp=Dis(a[p].from,a[p].to);
t.data = tmp;
t.nth = a[p].nth;
ans.push_back(t);
p++;
}
}
}
sort(ans.begin(),ans.end(),cmp1);
for(int i=;i<ans.size();i++)
{
cout<<ans[i].data<<endl;
}
return ;
}

I - Navigation Nightmare 并查集的更多相关文章

  1. POJ 1984 Navigation Nightmare 带全并查集

    Navigation Nightmare   Description Farmer John's pastoral neighborhood has N farms (2 <= N <= ...

  2. 【POJ 1984】Navigation Nightmare(带权并查集)

    Navigation Nightmare Description Farmer John's pastoral neighborhood has N farms (2 <= N <= 40 ...

  3. BZOJ_3362_[Usaco2004 Feb]Navigation Nightmare 导航噩梦_并查集

    BZOJ_3362_[Usaco2004 Feb]Navigation Nightmare 导航噩梦_并查集 Description     农夫约翰有N(2≤N≤40000)个农场,标号1到N,M( ...

  4. POJ 1984 Navigation Nightmare 【经典带权并查集】

    任意门:http://poj.org/problem?id=1984 Navigation Nightmare Time Limit: 2000MS   Memory Limit: 30000K To ...

  5. POJ1984:Navigation Nightmare(带权并查集)

    Navigation Nightmare Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 7871   Accepted: 2 ...

  6. 带权并查集【bzoj3362】: [Usaco2004 Feb]Navigation Nightmare 导航噩梦

    [bzoj]3362: [Usaco2004 Feb]Navigation Nightmare 导航噩梦 ​ 农夫约翰有N(2≤N≤40000)个农场,标号1到N,M(2≤M≤40000)条的不同的垂 ...

  7. POJ1984 Navigation Nightmare —— 种类并查集

    题目链接:http://poj.org/problem?id=1984 Navigation Nightmare Time Limit: 2000MS   Memory Limit: 30000K T ...

  8. POJ 1984 - Navigation Nightmare - [带权并查集]

    题目链接:http://poj.org/problem?id=1984 Time Limit: 2000MS Memory Limit: 30000K Case Time Limit: 1000MS ...

  9. POJ 1984 Navigation Nightmare(二维带权并查集)

    题目链接:http://poj.org/problem?id=1984 题目大意:有n个点,在平面上位于坐标点上,给出m关系F1  F2  L  D ,表示点F1往D方向走L距离到点F2,然后给出一系 ...

随机推荐

  1. 红黑树与AVL(平衡二叉树)的区别

    关于红黑树和AVL树,来自网络: 1 好处 及 用途 红黑树 并不追求“完全平衡 ”——它只要求部分地达到平衡要求,降低了对旋转的要求,从而提高了性能. 红黑树能够以 O(log2  n)  的时间复 ...

  2. 6.12---Swagger中paramType---swagger的RequestParam和ApiImpliciParam----Example中方法带有selective

    paramType:表示参数放在哪个地方    header-->请求参数的获取:@RequestHeader(代码中接收注解)    query-->请求参数的获取:@RequestPa ...

  3. cookie的应用——浏览记录

    实体类 package entity; public class Product { private String id; private String proName; private String ...

  4. parsley之验证属性设置

    parsley.js添加表单验证功能,直接在html元素中添加对应属性: Name API Description Required #2.0必填 required HTML5 data-parsle ...

  5. ThinkPHP---thinkphp控制器、路由、分组设置(C)

    配置文件分3类:系统配置文件,分组配置文件,应用配置文件 ①系统配置文件ThinkPHP/Conf/convention.php: ②分组 / 模块 /平台配置文件Home/Conf/config.p ...

  6. js 的静态获取和动态获取

    静态获取方法 document.getElementById obj.querySelector obj.querySelectorAll 动态获取方法(每次使用时候会回去重新获取一次) obj.ge ...

  7. TWaver 3D作品Viewer查看器

    为了让开发者更方便的对各类3D模型.设备.物体进行浏览和查看,我们直接封装了mono.Viewer组件.它可以直接根据给定的数据源(json.obj.url等)进行数据加载和浏览展示.对于一般的3D设 ...

  8. 封装一个获取module.exports内容的方法

    let fs = require('fs') let req = (moduleName) => { //content代表的是文件内容 let content = fs.readFileSyn ...

  9. UVA - 1618 Weak Key(RMQ算法)

    题目: 给出k个互不相同的证书组成的序列Ni,判断是否存在4个证书Np.Nq.Nr.Ns(1≤p<q<r<s≤k)使得Nq>Ns>Np>Nr或者Nq<Ns&l ...

  10. Mybatis中and和or的细节处理

    当一条SQL中既有条件查又有模糊查的时候,偶尔会遇到这样的and拼接问题.参考如下代码: <select id="listSelectAllBusiness"> sel ...