Minimum Inversion Number

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 10326 Accepted Submission(s): 6359

Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.



For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:



a1, a2, ..., an-1, an (where m = 0 - the initial seqence)

a2, a3, ..., an, a1 (where m = 1)

a3, a4, ..., an, a1, a2 (where m = 2)

...

an, a1, a2, ..., an-1 (where m = n-1)



You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10
1 3 6 9 0 8 5 7 4 2
Sample Output
16
题目大意,从初始的数组開始,每次把第一个加到最后一个,求逆序数,共求出n个逆序数,找出最小值
对每种情况都求逆序数,能够每次都归并排序,或树状数组,或线段树,也能够由上一个的逆序数推出;
a[1] , a[2] , a[3] 。。。a[n],将a[1]放到最后,然后将a[2]放到最后,能够找到规律,将首个a[i]放到最后时,逆序数添加了 a[i]之前比a[i]大的,添加a[i]之后比a[i]大的,减小了a[i]之前比a[i]小的,减小了a[i]之后比a[i]小的,又由于每次给出的数n个数在0到n,且都不同,最后得出 逆序数会添加 n-a[i]个,降低a[i]-1个
#include <cstdio>
#include <cstring>
#define INF 0x3f3f3f3f
#include <algorithm>
using namespace std;
int tree[100000] , p[6000] , q[6000];
void update(int o,int x,int y,int u)
{
if( x == y && x == u )
tree[o]++ ;
else
{
int mid = (x + y)/ 2;
if( u <= mid )
update(o*2,x,mid,u);
else
update(o*2+1,mid+1,y,u);
tree[o] = tree[o*2] + tree[o*2+1];
}
}
int sum(int o,int x,int y,int i,int j)
{
int ans = 0 ;
if( i <= x && y <= j )
return tree[o] ;
else
{
int mid = (x + y) /2 ;
if( i <= mid )
ans += sum(o*2,x,mid,i,j);
if( mid+1 <= j )
ans += sum(o*2+1,mid+1,y,i,j);
}
return ans ;
}
int main()
{
int i , j , n , min1 , num ;
while(scanf("%d", &n)!=EOF)
{
min1 = 0 ;
memset(q,0,sizeof(q));
for(i = 1 ; i <= n ; i++)
{
scanf("%d", &p[i]);
p[i]++ ;
}
memset(tree,0,sizeof(tree));
for(i = 1 ; i <= n ; i++)
{
min1 += sum(1,1,n,p[i],n);
update(1,1,n,p[i]);
}
num = min1 ;
for(i = 1 ; i < n ; i++)
{
num = num + ( n - p[i] ) - (p[i] - 1) ;
if( num < min1 )
min1 = num ;
}
printf("%d\n", min1);
}
return 0;
}

hdu1394--Minimum Inversion Number(线段树求逆序数,纯为练习)的更多相关文章

  1. [HDU] 1394 Minimum Inversion Number [线段树求逆序数]

    Minimum Inversion Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  2. HDU_1394_Minimum Inversion Number_线段树求逆序数

    Minimum Inversion Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  3. hdu1394(Minimum Inversion Number)线段树

    明知道是线段树,却写不出来,搞了半天,戳,没办法,最后还是得去看题解(有待于提高啊啊),想做道题还是难啊. 还是先贴题吧 HDU-1394 Minimum Inversion Number Time ...

  4. HDU-1394 Minimum Inversion Number 线段树+逆序对

    仍旧在练习线段树中..这道题一开始没有完全理解搞了一上午,感到了自己的shabi.. Minimum Inversion Number Time Limit: 2000/1000 MS (Java/O ...

  5. HDU.1394 Minimum Inversion Number (线段树 单点更新 区间求和 逆序对)

    HDU.1394 Minimum Inversion Number (线段树 单点更新 区间求和 逆序对) 题意分析 给出n个数的序列,a1,a2,a3--an,ai∈[0,n-1],求环序列中逆序对 ...

  6. hdu 13394 Minimum Inversion Number 线段树

    题意: 首先给你一个长度为n的序列v,你需要首先找出来逆序对(i<j && v[i]>v[j]) 然后把这个序列的最后一个元素放在第一个位置上,其他元素都向后移动一位. 一 ...

  7. HDU-1394 Minimum Inversion Number(线段树求逆序数)

    Minimum Inversion Number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Ot ...

  8. hdu1394 Minimum Inversion Number (线段树求逆序数&&思维)

    题目传送门 Minimum Inversion Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  9. HDU - 1394 Minimum Inversion Number (线段树求逆序数)

    Description The inversion number of a given number sequence a1, a2, ..., an is the number of pairs ( ...

  10. Minimum Inversion Number(线段树求逆序数)

    Minimum Inversion Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

随机推荐

  1. [Android]获取设备相关信息

    public static int screenWidth(Activity activity) { DisplayMetrics dm = new DisplayMetrics(); activit ...

  2. 基于Qt的类QQ气泡聊天的界面开发

    近期在写IM 聊天界面,想设计出一个类似QQ气泡聊天的样式 使用了几种办法 1:使用Qt以下的QListview来实现QQ类似效果.差强人意 2:使用QWebview载入html css样式来完毕.发 ...

  3. JavaScript 中的事件类型1(读书笔记思维导图)

    Web 浏览器中可能发生的事件有很多类型.如前所述,不同的事件类型具有不同的信息,而“ DOM3级事件”规定了以下几类事件. UI(User Interface,用户界面)事件:当用户与页面上的元素交 ...

  4. Android 开源项目源码解析(第二期)

    Android 开源项目源码解析(第二期) 阅读目录 android-Ultra-Pull-To-Refresh 源码解析 DynamicLoadApk 源码解析 NineOldAnimations ...

  5. 简单的三方登录SDK示例,Android Activity之间数据的传递

    先建立Library工程,即普通工程然后在Android的属性勾选Library选项. 这里建立的工程为 mySdk ,Activity名为LoginActivity. LoginActivity代码 ...

  6. javascript面向对象程序设计

    在学习js面向对象编程之前,首先须要知道什么是面向对象.面向对象语言都有类的概念,通过它能够创建具有同样属性和方法的对象.但js并没有类的概念,因此js中的对象和其它语言的对象有所不同. js对象能够 ...

  7. vim配置(vimplus)

    vim配置(vimplus) vimplus vimplus是vim的超级配置安装程序 github地址:https://github.com/chxuan/vimplus.git,欢迎star和fo ...

  8. jQuery UI 是建立在 jQuery JavaScript 库上的一组用户界面交互、特效、小部件及主题

    jQuery UI 是建立在 jQuery JavaScript 库上的一组用户界面交互.特效.小部件及主题.无论您是创建高度交互的 Web 应用程序还是仅仅向窗体控件添加一个日期选择器,jQuery ...

  9. HDU 3217 Health(状压DP)

    Problem Description Unfortunately YY gets ill, but he does not want to go to hospital. His girlfrien ...

  10. 【译】ASP.NET MVC 5 教程 - 11:Details 和 Delete 方法详解

    原文:[译]ASP.NET MVC 5 教程 - 11:Details 和 Delete 方法详解 在教程的这一部分,我们将研究一下自动生成的 Details 和Delete 方法. Details ...