题目地址:

http://poj.org/problem?id=2524

题目内容:

Ubiquitous Religions
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 26119   Accepted: 12859

Description

There are so many different religions in the world today that it is difficult to keep track of them all. You are interested in finding out how many different religions students in your university believe in.

You know that there are n students in your university (0 < n <= 50000). It is infeasible for you to ask every student their religious beliefs. Furthermore, many students are not comfortable expressing their beliefs. One way to avoid these problems is to ask m (0 <= m <= n(n-1)/2) pairs of students and ask them whether they believe in the same religion (e.g. they may know if they both attend the same church). From this data, you may not know what each person believes in, but you can get an idea of the upper bound of how many different religions can be possibly represented on campus. You may assume that each student subscribes to at most one religion.

Input

The input consists of a number of cases. Each case starts with a line specifying the integers n and m. The next m lines each consists of two integers i and j, specifying that students i and j believe in the same religion. The students are numbered 1 to n. The end of input is specified by a line in which n = m = 0.

Output

For each test case, print on a single line the case number (starting with 1) followed by the maximum number of different religions that the students in the university believe in.

Sample Input

10 9
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
10 4
2 3
4 5
4 8
5 8
0 0

Sample Output

Case 1: 1
Case 2: 7

Hint

Huge input, scanf is recommended.

Source

 
 
解题思路:
 
水题。很单纯的并查集问题,就是见人就合并,最后统计有几个集合然后输出。
如何计算总共有几个集合?
可以看出,有n个人,因此,初始化的时候有n个集合。当前两个人如果需要合并,那么n - 1,如果不需要,就直接跳过。最后输出还剩几个集合便是答案。
 
 
全部代码:
#include <stdio.h>

int set[];
int n,m; int find_father(int son)
{
if (set[son] == ) {
return son;
}
return set[son] = find_father(set[son]);
} void init()
{
for (int i = ; i < n; i ++) {
set[i] = ;
}
} int main(void)
{
int count = ;
int man1,man2;
while (scanf("%d%d", &n, &m)) {
if (m == && n == )
break;
int res = n;
for (int i = ; i < m; i ++) {
scanf("%d%d", &man1, &man2);
int fat1 = find_father(man1);
int fat2 = find_father(man2);
if (fat1 != fat2) {
set[fat2] = fat1;
res --; // 合并一次,减少一个集合
}
}
printf("Case %d: %d\n", count, res);
init();
count ++;
}
return ;
}

【原创】poj ----- 2524 Ubiquitous Religions 解题报告的更多相关文章

  1. POJ 2524 Ubiquitous Religions 解题报告

    Ubiquitous Religions Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 34122   Accepted:  ...

  2. POJ 2524 Ubiquitous Religions

    Ubiquitous Religions Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 20668   Accepted:  ...

  3. poj 2524 Ubiquitous Religions(宗教信仰)

    Ubiquitous Religions Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 30666   Accepted: ...

  4. [ACM] POJ 2524 Ubiquitous Religions (并查集)

    Ubiquitous Religions Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 23093   Accepted:  ...

  5. poj 2524:Ubiquitous Religions(并查集,入门题)

    Ubiquitous Religions Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 23997   Accepted:  ...

  6. poj 2524 Ubiquitous Religions 一简单并查集

    Ubiquitous Religions   Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 22389   Accepted ...

  7. poj 2524 Ubiquitous Religions(并查集)

    Ubiquitous Religions Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 23168   Accepted:  ...

  8. POJ 2524 Ubiquitous Religions (幷查集)

    Ubiquitous Religions Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 23090   Accepted:  ...

  9. poj 2524 Ubiquitous Religions (并查集)

    题目:http://poj.org/problem?id=2524 题意:问一个大学里学生的宗教,通过问一个学生可以知道另一个学生是不是跟他信仰同样的宗教.问学校里最多可能有多少个宗教. 也就是给定一 ...

随机推荐

  1. 打印class文件的Java编译器内部的版本号

    当改变了jdk版本时,在编译java时,会遇到Unsupported major.minor version错误.错误信息如下 : Unsupported major.minor version 50 ...

  2. RR模式下的事务隔离

    <pre name="code" class="html">mysql> select * from t100; Session 2: +-- ...

  3. linux下修改hostid

    linux下修改hostid 网上有很多版本,总结了这几点. 1> 一个以16进制显示的int字符串: 2> 配置文件: /etc/hostid; 如果有值,输出, 结束. 3> 从 ...

  4. Java线程的生命周期(转)

    Java线程的生命周期 一个线程的产生是从我们调用了start方法开始进入Runnable状态,即可以被调度运行状态,并没有真正开始运行,调度器可以将CPU分配给它,使线程进入Running状态,真正 ...

  5. 欧拉计划&#183;第四题

    题目4:找出由两个三位数乘积构成的回文. 一个回文数指的是从左向右和从右向左读都一样的数字.最大的由两个两位数乘积构成的回文数是9009 = 91 * 99. 找出最大的有由个三位数乘积构成的回文数. ...

  6. MFC之窗体改动工具栏编程状态栏编程程序启动画面

    1窗体外观的改动 (1)改动在CMainFrame::preCreateWindow(CREATESTRUCT& cs) 改动标题:cs.style&=FWS_ADDTOTITLE; ...

  7. GNU C的使用

    基本语法 gcc [options] [filenames]  说明:  在gcc后面可以有多个编译选项,同时进行多个编译操作.很多 的gcc选项包括一个以上的字符.因此你必须为每个选项指定各 自 ...

  8. openGl超级宝典学习笔记 (1)第一个三角形

    执行效果 代码及解析: // // Triangle.cpp // Triangle // // Created by fengsser on 15/6/20. // Copyright (c) 20 ...

  9. String、StringBuffer与StringBuilder差分

    的位置不言而喻.那么他们究竟有什么优缺点,究竟什么时候该用谁呢?以下我们从以下几点说明一下 1.三者在运行速度方面的比較:StringBuilder >  StringBuffer  >  ...

  10. loj1336(数学)

    传送门:Sigma Function 题意:定义f(n)为n的约数之和,求[1,n]中f值为偶数的数的个数. 分析:由题目给定公式可知,若f(n)为奇数,则相乘的每一项都必须为奇数. 每一项为奇数的条 ...