本篇文章介绍如何用OpenCV-Python来实现初级滤波功能。

提示:

  • 转载请详细注明原作者及出处,谢谢!
  • 本文介绍使用OpenCV-Python实现基本的滤波处理
  • 本文不介绍滤波处理的详细概念,所以读者需要预先对其有一定的了解。

简介

过滤是信号和图像处理中基本的任务。其目的是根据应用环境的不同,选择性的提取图像中某些认为是重要的信息。过滤可以移除图像中的噪音、提取感兴趣的可视特征、允许图像重采样,等等。其源自于一般的信号和系统理论,这里将不介绍该理论的细节。但本章会介绍关于过滤的基本概念,以及如何在图像处理程序中使用滤波器。首先,简要介绍下频率域分析的概念。

当我们观察一张图片时,我们观察的是图像中有多少灰度级(或颜色)及其分布。根据灰度分布的不同来区分不同的图像。但还有其他方面可以对图像进行分析。我们可以观察图像中灰度的变化。某些图像中包含大量的强度不变的区域(如蓝天),而在其他图像中的灰度变化可能会非常快(如包含许多小物体的拥挤的图像)。因此,观察图像中这些变化的频率就构成了另一条分类图像的方法。这个观点称为频域。而通过观察图像灰度分布来分类图像称为空间域。

频域分析将图像分成从低频到高频的不同部分。低频对应图像强度变化小的区域,而高频是图像强度变化非常大的区域。目前已存在若干转换方法,如傅立叶变换或余弦变换,可以用来清晰的显示图像的频率内容。注意,由于图像是一个二维实体,所以其由水平频率(水平方向的变化)和竖直频率(竖直方向的变化)共同组成。

在频率分析领域的框架中,滤波器是一个用来增强图像中某个波段或频率并阻塞(或降低)其他频率波段的操作。低通滤波器是消除图像中高频部分,但保留低频部分。高通滤波器消除低频部分

本篇文章介绍在OpenCV-Python中实现的初级的滤波操作,下一篇文章介绍更加复杂的滤波原理及其实现。

本篇文章使用传统的lena作为实验图像。

用低通滤波来平滑图像

低通滤波器的目标是降低图像的变化率。如将每个像素替换为该像素周围像素的均值。这样就可以平滑并替代那些强度变化明显的区域。在OpenCV中,可以通过blur函数做到这一点:

dst = cv2.blur(image,(5,5)); 

其中dst是blur处理后返回的图像,参数一是输入的待处理图像,参数2是低通滤波器的大小。其后含有几个可选参数,用来设置滤波器的细节,具体可查阅参考资料2。不过这里,这样就够了。下面是一个简单的示例代码:

#coding=utf-8
import cv2 img = cv2.imread("D:/lena.jpg", 0)
result = cv2.blur(img, (5,5)) cv2.imshow("Origin", img)
cv2.imshow("Blur", result) cv2.waitKey(0)
cv2.destroyAllWindows()

结果如下,左边是平滑过的图像,右边是原图像:

这种滤波器又称为boxfilter(注,这与化学上的箱式过滤器是两码事,所以这里就不翻译了)。所以也可通过OpenCV的cv2.bofxfilter(...)函数来完成相同的工作。如下:

result1 = cv2.boxFilter(img, -1, (5, 5))

这行代码与上面使用blur函数的效果完全相同。其中第二个参数的-1表示输出图像使用的深度与输入图像相同。后面还有几个可选参数,具体可查阅OpenCV文档。

高斯模糊

在某些情况下,需要对一个像素的周围的像素给予更多的重视。因此,可通过分配权重来重新计算这些周围点的值。这可通过高斯函数(钟形函数,即喇叭形数)的权重方案来解决。cv::GaussianBlur函数可作为滤波器用下面的方法调用:

gaussianResult = cv2.GaussianBlur(img,(5,5),1.5)

区别

低通滤波与高斯滤波的不同之处在于:低通滤波中,滤波器中每个像素的权重是相同的,即滤波器是线性的。而高斯滤波器中像素的权重与其距中心像素的距离成比例。关于高斯模糊的详细内容,抽空将写一篇独立的文章介绍。

使用中值滤波消除噪点

前面介绍的是线性过滤器,这里介绍非线性过滤器——中值滤波器。由于中值滤波器对消除椒盐现象特别有用。所以我们使用第二篇教程中椒盐函数先对图像进行处理,将处理结果作为示例图片。

调用中值滤波器的方法与调用其他滤波器的方法类似,如下:

result = cv2.medianBlur(image,5)

函数返回处理结果,第一个参数是待处理图像,第二个参数是孔径的尺寸,一个大于1的奇数。比如这里是5,中值滤波器就会使用5×5的范围来计算。即对像素的中心值及其5×5邻域组成了一个数值集,对其进行处理计算,当前像素被其中值替换掉。

如果在某个像素周围有白色或黑色的像素,这些白色或黑色的像素不会选择作为中值(最大或最小值不用),而是被替换为邻域值。代码如下:

#coding=utf-8
import cv2
import numpy as np def salt(img, n):
for k in range(n):
i = int(np.random.random() * img.shape[1]);
j = int(np.random.random() * img.shape[0]);
if img.ndim == 2:
img[j,i] = 255
elif img.ndim == 3:
img[j,i,0]= 255
img[j,i,1]= 255
img[j,i,2]= 255
return img img = cv2.imread("D:/lena.jpg", 0)
result = salt(img, 500)
median = cv2.medianBlur(result, 5) cv2.imshow("Salt", result)
cv2.imshow("Median", median) cv2.waitKey(0)

处理结果如下:

由于中值滤波不会处理最大和最小值,所以就不会受到噪声的影响。相反,如果直接采用blur进行均值滤波,则不会区分这些噪声点,滤波后的图像会受到噪声的影响。

中值滤波器在处理边缘也有优势。但中值滤波器会清除掉某些区域的纹理(如背景中的树)。

其他

由于方向滤波器与这里的原理有较大的出入,所以将用独立的一篇文章中介绍其原理以及实现。

参考资料:

1、《Opencv2 Computer Vision Application Programming Cookbook》

2、《OpenCV References Manule》

如果觉得本文写的还可以的话,请轻点“顶”,您的支持是我写下去的动力之一。

未完待续。。。如有错误请指正,本人会虚心接受并改正!谢谢!

OpenCV-Python教程(5、初级滤波内容)的更多相关文章

  1. OpenCV Python教程(3、直方图的计算与显示)

    转载请详细注明原作者及出处,谢谢! 本篇文章介绍如何用OpenCV Python来计算直方图,并简略介绍用NumPy和Matplotlib计算和绘制直方图 直方图的背景知识.用途什么的就直接略过去了. ...

  2. OpenCV Python教程(1、图像的载入、显示和保存)

    原文地址:http://blog.csdn.net/sunny2038/article/details/9057415 转载请详细注明原作者及出处,谢谢! 本文是OpenCV  2 Computer ...

  3. opencv python:边缘保留滤波(EPF)

    EPF:E边缘,P保留,F滤波 import cv2 as cv import numpy as np def bi_demo(image): # bilateralFilter(src, d, si ...

  4. 系列文章 -- OpenCV入门教程

     <OpenCV3编程入门>内容简介&勘误&配套源代码下载 [OpenCV入门教程之十八]OpenCV仿射变换 & SURF特征点描述合辑 [OpenCV入门教程之 ...

  5. 【OpenCV入门教程之三】 图像的载入,显示和输出 一站式完全解析(转)

    本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/20537737 作者:毛星云(浅墨)  ...

  6. 【OpenCV新手教程之十二】OpenCV边缘检測:Canny算子,Sobel算子,Laplace算子,Scharr滤波器合辑

    本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/25560901 作者:毛星云(浅墨) ...

  7. 笔记|《简明Python教程》:编程小白的第一本python入门书

    <简明Python教程>这本书是初级的Python入门教材,初级内容基本覆盖,对高级内容没有做深入纠结.适合刚接触Python的新手,行文比较简洁轻松,读起来也比较顺畅. 下面是我根据各个 ...

  8. [OpenCV入门教程之十二】OpenCV边缘检测:Canny算子,Sobel算子,Laplace算子,Scharr滤波器合辑

    http://blog.csdn.net/poem_qianmo/article/details/25560901 本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog ...

  9. Ubuntu系统---安装Caffe (+OpenCV+Python+CPU-only)

    安装配置Ubuntu14.04+Caffe (+OpenCV+Python+CPU-only) 记录 [作者:Wu Ping.时间:20180428.] 本人已经安装很多次的Caffe了:从开始的初探 ...

随机推荐

  1. 设计模式模式适配器(Adapter)摘录

    23种子GOF设计模式一般分为三类:创建模式.结构模型.行为模式. 创建模式抽象的实例,他们帮助建立一个系统,是独立于如何.这是一个这些对象和陈述的组合.创建使用继承一个类架构更改实例,一个对象类型模 ...

  2. ASM丢失disk header导致ORA-15032、ORA-15040、ORA-15042 Diskgroup无法mount

    SQL> select * from v$version; BANNER --------------------------– Oracle Database 11g Enterprise E ...

  3. Java学习——何为JNDI

    曾记得在做机房收费系统的时候就接触到了API,由于它的功能非常强大,可是自己对它却不怎么了解.所以当时是又爱又怕.现在,一路走来才明确,事实上它就是一组接口.仅仅要我们去了解它就会发现.它事实上也没想 ...

  4. http协议与web本质

    当你在浏览器地址栏敲入“http://www.csdn.net/”,然后猛按回车,呈现在你面前的,将是csdn的首页了(这真是废话,你会认为这是理所当然的).作为一个开发者,尤其是web开发人员,我想 ...

  5. 《Head First 设计模式》学习笔记——状态模式

    在软件开发过程中.应用程序可能会依据不同的情况作出不同的处理. 最直接的解决方式是将这些全部可能发生的情况全都考虑到.然后使用if... ellse语句来做状态推断来进行不同情况的处理. 可是对复杂状 ...

  6. 原始的js代码和jquery对比

    Even a task as simple as this can be complicated without jQuery at our disposal. In plain JavaScript ...

  7. hadoop拷贝文件时 org.apache.hadoop.ipc.RemoteException异常的解决

    1.系统或hdfs是否有空间 2.datanode数是否正常 3.是否在safemode 4.防火墙关闭 5.配置方面 6.把NameNode的tmp文件清空,然后重新格式化NameNode

  8. Android Sip学习(三)Android Voip实现

    Android Sip学习(三)Android Voip实现   Android Sip学习(准备知识)SIP 协议完整的呼叫流程 Android Sip学习(一)Android 2.3 APIs S ...

  9. Documentation | AnsibleWorks

    Documentation | AnsibleWorks   Welcome to the Ansible documentation! Ansible is an IT automation too ...

  10. mysql update改动多条数据

    通常情况下,我们会使用下面SQL语句来更新字段值: 复制代码代码例如以下: UPDATE mytable SET myfield='value' WHERE other_field='other_va ...