UVA 116 Unidirectional TSP(dp + 数塔问题)
| Unidirectional TSP |
Background
Problems that require minimum paths through some domain appear in many different areas of computer science. For example, one of the constraints in VLSI routing problems is minimizing wire length. The Traveling Salesperson Problem (TSP) -- finding whether all the cities in a salesperson's route can be visited exactly once with a specified limit on travel time -- is one of the canonical examples of an NP-complete problem; solutions appear to require an inordinate amount of time to generate, but are simple to check.
This problem deals with finding a minimal path through a grid of points while traveling only from left to right.
The Problem
Given an
matrix of integers, you are to write a program that computes a path of minimal weight. A path starts anywhere in column 1 (the first column) and consists of a sequence of steps terminating in column n (the last column). A step consists of traveling from column i to column i+1 in an adjacent (horizontal or diagonal) row. The first and last rows (rows 1 and m) of a matrix are considered adjacent, i.e., the matrix ``wraps'' so that it represents a horizontal cylinder. Legal steps are illustrated below.

The weight of a path is the sum of the integers in each of the n cells of the matrix that are visited.
For example, two slightly different
matrices are shown below (the only difference is the numbers in the bottom row).

The minimal path is illustrated for each matrix. Note that the path for the matrix on the right takes advantage of the adjacency property of the first and last rows.
The Input
The input consists of a sequence of matrix specifications. Each matrix specification consists of the row and column dimensions in that order on a line followed by
integers where m is the row dimension and n is the column dimension. The integers appear in the input in row major order, i.e., the first n integers constitute the first row of the matrix, the second n integers constitute the second row and so on. The integers on a line will be separated from other integers by one or more spaces. Note: integers are not restricted to being positive. There will be one or more matrix specifications in an input file. Input is terminated by end-of-file.
For each specification the number of rows will be between 1 and 10 inclusive; the number of columns will be between 1 and 100 inclusive. No path's weight will exceed integer values representable using 30 bits.
The Output
Two lines should be output for each matrix specification in the input file, the first line represents a minimal-weight path, and the second line is the cost of a minimal path. The path consists of a sequence of nintegers (separated by one or more spaces) representing the rows that constitute the minimal path. If there is more than one path of minimal weight the path that is lexicographically smallest should be output.
Sample Input
5 6
3 4 1 2 8 6
6 1 8 2 7 4
5 9 3 9 9 5
8 4 1 3 2 6
3 7 2 8 6 4
5 6
3 4 1 2 8 6
6 1 8 2 7 4
5 9 3 9 9 5
8 4 1 3 2 6
3 7 2 1 2 3
2 2
9 10 9 10
Sample Output
1 2 3 4 4 5
16
1 2 1 5 4 5
11
1 1
19
题意:给定一个矩阵。求出从左到右权值和最小的路径,每次有3种方式,且可以跨边界。如图,
思路:dp,数塔问题的变形。。只要注意保存下输出路径要按字典序,所以要从右往左储存。
代码:
#include <stdio.h>
#include <string.h> int n, m, map[105][105], i, j, ans, out[105][105], outi;
int min(int a, int b) {
return a < b ? a : b;
}
int main() {
while (~scanf("%d%d", &n, &m)) {
ans = 999999999; outi = 0;
memset(out, -1, sizeof(out));
for (i = 0; i < n; i ++)
for (j = 0; j < m; j ++) {
scanf("%d", &map[i][j]);
}
for (j = m - 2; j >= 0; j --) {
for (i = 0; i < n; i ++) {
int a, b, c, ai, bi, ci;
if (i == 0) {
a = map[n - 1][j + 1];
ai = n - 1;
}
else {
a = map[i - 1][j + 1];
ai = i - 1;
}
b = map[i][j + 1];
bi = i;
if (i == n - 1) {
c = map[0][j + 1];
ci = 0;
}
else {
c = map[i + 1][j + 1];
ci = i + 1;
}
if (map[i][j] + a <= map[i][j] + b && map[i][j] + a <= map[i][j] + c) {
map[i][j] += a;
out[i][j] = ai;
if (map[i][j] + a == map[i][j] + b) {
out[i][j] = min(min(ai, bi), out[i][j]);
}
if (map[i][j] + a == map[i][j] + c) {
out[i][j] = min(min(ai, ci), out[i][j]);
}
}
else if (map[i][j] + b <= map[i][j] + a && map[i][j] + b <= map[i][j] + c) {
map[i][j] += b;
out[i][j] = bi;
if (map[i][j] + a == map[i][j] + b) {
out[i][j] = min(min(ai, bi), out[i][j]);
}
if (map[i][j] + b == map[i][j] + c) {
out[i][j] = min(min(bi, ci), out[i][j]);
}
}
else if (map[i][j] + c <= map[i][j] + b && map[i][j] + c <= map[i][j] + a) {
map[i][j] += c;
out[i][j] = ci;
if (map[i][j] + a == map[i][j] + c) {
out[i][j] = min(min(ai, ci), out[i][j]);
}
if (map[i][j] + b == map[i][j] + c) {
out[i][j] = min(min(bi, ci), out[i][j]);
}
}
}
}
for (i = 0; i < n; i ++) {
if (ans > map[i][0]) {
ans = map[i][0];
outi = i;
}
}
int sb = 0;
printf("%d", outi + 1);
while (out[outi][sb] != -1) {
printf(" %d", out[outi][sb] + 1);
outi = out[outi][sb];
sb ++;
}
printf("\n");
printf("%d\n", ans);
}
return 0;
}
UVA 116 Unidirectional TSP(dp + 数塔问题)的更多相关文章
- uva 116 Unidirectional TSP【号码塔+打印路径】
主题: uva 116 Unidirectional TSP 意甲冠军:给定一个矩阵,当前格儿童值三个方向回格最小值和当前的和,就第一列的最小值并打印路径(同样则去字典序最小的). 分析:刚開始想错了 ...
- UVA 116 Unidirectional TSP(DP最短路字典序)
Description Unidirectional TSP Background Problems that require minimum paths through some domai ...
- UVa 116 Unidirectional TSP (DP)
该题是<算法竞赛入门经典(第二版)>的一道例题,难度不算大.我先在没看题解的情况下自己做了一遍,虽然最终通过了,思路与书上的也一样.但比书上的代码复杂了很多,可见自己对问题的处理还是有所欠 ...
- uva 116 Unidirectional TSP (DP)
uva 116 Unidirectional TSP Background Problems that require minimum paths through some domain appear ...
- UVA 116 Unidirectional TSP 经典dp题
题意:找最短路,知道三种行走方式,给出图,求出一条从左边到右边的最短路,且字典序最小. 用dp记忆化搜索的思想来考虑是思路很清晰的,但是困难在如何求出字典序最小的路. 因为左边到右边的字典序最小就必须 ...
- UVA - 116 Unidirectional TSP 多段图的最短路 dp
题意 略 分析 因为字典序最小,所以从后面的列递推,每次对上一列的三个方向的行排序就能确保,数字之和最小DP就完事了 代码 因为有个地方数组名next和里面本身的某个东西冲突了,所以编译错了,后来改成 ...
- UVA - 116 Unidirectional TSP (单向TSP)(dp---多段图的最短路)
题意:给一个m行n列(m<=10, n<=100)的整数矩阵,从第一列任何一个位置出发每次往右,右上或右下走一格,最终到达最后一列.要求经过的整数之和最小.第一行的上一行是最后一行,最后一 ...
- UVa - 116 - Unidirectional TSP
Background Problems that require minimum paths through some domain appear in many different areas of ...
- uva 116 - Unidirectional TSP (动态规划)
第一次做动规题目,下面均为个人理解以及个人方法,状态转移方程以及状态的定义也是依据个人理解.请过路大神不吝赐教. 状态:每一列的每个数[ i ][ j ]都是一个状态: 然后定义状态[ i ][ j ...
随机推荐
- Windows API获取系统配置文件的配置参数
在Windows平台下获取系统配置文件(如:System.ini)的配置参数. 系统配置文件System.ini的内容如下: [SYSTEM] ServiceIP = 10.128.11.99:600 ...
- 获取sdcard和内存的存储空间
package com.example.sdcardspace; import java.io.File; import android.os.Bundle; import android.os.En ...
- ARM标准汇编与GNU汇编
ARM标准汇编与GNU汇编 http://www.cnblogs.com/hnrainll/archive/2011/05/17/2048315.html
- java--创建多线程两种方法的比较
[通过继承Thread] 一个Thread对象只能创建一个线程,即使它调用多次的.start()也会只运行一个的线程. [看下面的代码 & 输出结果] package Test; class ...
- 06-UIKit(tableView数据模型)
目录: 一.UIPageControl 二.table view数据模型 三.反向传值给TableView并更新 回到顶部 一.UIPageControl在页面下显示点 1 重要属性 .numberO ...
- android中获取 bitmap 像素的颜色 之吸管取色功能
本功能是参考android API colorPickerView修改,实现类似与PS中吸管取色功能.也就是可以对图片的任意位置取该位置的RGB.本demo中,完成了色盘取色功能.当点击色盘的某个位置 ...
- nodejs安装不了和npm安装不了的解决方法
http://caibaojian.com/nodejs-roll-back.html
- Blog 转移
Blog 转移至 http://blog.rapcoder.com CSDN : http://blog.csdn.net/a542551042 欢迎一起交流 学习 ,谢谢!!!
- COCOS2D-X之圆形进度条的一个简单Demo
这应该是游戏中很常见的一个效果.显示某个事件的进度等,在加载资源或者联网的时候经常用到.所以有必要学习学习 一.我们直接在COCOS2D-X自带的HelloCpp的工程中添加代码即可.我们在初始化中添 ...
- android Asynctask的优缺点?是否能同一时候并发100+asynctask呢?
一 Asynctask的优缺点? AsyncTask,是android提供的轻量级的异步类,能够直接继承AsyncTask,在类中实现异步操作,并提供接口反馈当前异步运行的程度(能够通过接口实现UI ...