Unidirectional TSP 

Background

Problems that require minimum paths through some domain appear in many different areas of computer science. For example, one of the constraints in VLSI routing problems is minimizing wire length. The Traveling Salesperson Problem (TSP) -- finding whether all the cities in a salesperson's route can be visited exactly once with a specified limit on travel time -- is one of the canonical examples of an NP-complete problem; solutions appear to require an inordinate amount of time to generate, but are simple to check.

This problem deals with finding a minimal path through a grid of points while traveling only from left to right.

The Problem

Given an  matrix of integers, you are to write a program that computes a path of minimal weight. A path starts anywhere in column 1 (the first column) and consists of a sequence of steps terminating in column n (the last column). A step consists of traveling from column i to column i+1 in an adjacent (horizontal or diagonal) row. The first and last rows (rows 1 and m) of a matrix are considered adjacent, i.e., the matrix ``wraps'' so that it represents a horizontal cylinder. Legal steps are illustrated below.

The weight of a path is the sum of the integers in each of the n cells of the matrix that are visited.

For example, two slightly different  matrices are shown below (the only difference is the numbers in the bottom row).

The minimal path is illustrated for each matrix. Note that the path for the matrix on the right takes advantage of the adjacency property of the first and last rows.

The Input

The input consists of a sequence of matrix specifications. Each matrix specification consists of the row and column dimensions in that order on a line followed by  integers where m is the row dimension and n is the column dimension. The integers appear in the input in row major order, i.e., the first n integers constitute the first row of the matrix, the second n integers constitute the second row and so on. The integers on a line will be separated from other integers by one or more spaces. Note: integers are not restricted to being positive. There will be one or more matrix specifications in an input file. Input is terminated by end-of-file.

For each specification the number of rows will be between 1 and 10 inclusive; the number of columns will be between 1 and 100 inclusive. No path's weight will exceed integer values representable using 30 bits.

The Output

Two lines should be output for each matrix specification in the input file, the first line represents a minimal-weight path, and the second line is the cost of a minimal path. The path consists of a sequence of nintegers (separated by one or more spaces) representing the rows that constitute the minimal path. If there is more than one path of minimal weight the path that is lexicographically smallest should be output.

Sample Input

5 6
3 4 1 2 8 6
6 1 8 2 7 4
5 9 3 9 9 5
8 4 1 3 2 6
3 7 2 8 6 4
5 6
3 4 1 2 8 6
6 1 8 2 7 4
5 9 3 9 9 5
8 4 1 3 2 6
3 7 2 1 2 3
2 2
9 10 9 10

Sample Output

1 2 3 4 4 5
16
1 2 1 5 4 5
11
1 1
19

题意:给定一个矩阵。求出从左到右权值和最小的路径,每次有3种方式,且可以跨边界。如图,

思路:dp,数塔问题的变形。。只要注意保存下输出路径要按字典序,所以要从右往左储存。

代码:

#include <stdio.h>
#include <string.h> int n, m, map[105][105], i, j, ans, out[105][105], outi;
int min(int a, int b) {
return a < b ? a : b;
}
int main() {
while (~scanf("%d%d", &n, &m)) {
ans = 999999999; outi = 0;
memset(out, -1, sizeof(out));
for (i = 0; i < n; i ++)
for (j = 0; j < m; j ++) {
scanf("%d", &map[i][j]);
}
for (j = m - 2; j >= 0; j --) {
for (i = 0; i < n; i ++) {
int a, b, c, ai, bi, ci;
if (i == 0) {
a = map[n - 1][j + 1];
ai = n - 1;
}
else {
a = map[i - 1][j + 1];
ai = i - 1;
}
b = map[i][j + 1];
bi = i;
if (i == n - 1) {
c = map[0][j + 1];
ci = 0;
}
else {
c = map[i + 1][j + 1];
ci = i + 1;
}
if (map[i][j] + a <= map[i][j] + b && map[i][j] + a <= map[i][j] + c) {
map[i][j] += a;
out[i][j] = ai;
if (map[i][j] + a == map[i][j] + b) {
out[i][j] = min(min(ai, bi), out[i][j]);
}
if (map[i][j] + a == map[i][j] + c) {
out[i][j] = min(min(ai, ci), out[i][j]);
}
}
else if (map[i][j] + b <= map[i][j] + a && map[i][j] + b <= map[i][j] + c) {
map[i][j] += b;
out[i][j] = bi;
if (map[i][j] + a == map[i][j] + b) {
out[i][j] = min(min(ai, bi), out[i][j]);
}
if (map[i][j] + b == map[i][j] + c) {
out[i][j] = min(min(bi, ci), out[i][j]);
}
}
else if (map[i][j] + c <= map[i][j] + b && map[i][j] + c <= map[i][j] + a) {
map[i][j] += c;
out[i][j] = ci;
if (map[i][j] + a == map[i][j] + c) {
out[i][j] = min(min(ai, ci), out[i][j]);
}
if (map[i][j] + b == map[i][j] + c) {
out[i][j] = min(min(bi, ci), out[i][j]);
}
}
}
}
for (i = 0; i < n; i ++) {
if (ans > map[i][0]) {
ans = map[i][0];
outi = i;
}
}
int sb = 0;
printf("%d", outi + 1);
while (out[outi][sb] != -1) {
printf(" %d", out[outi][sb] + 1);
outi = out[outi][sb];
sb ++;
}
printf("\n");
printf("%d\n", ans);
}
return 0;
}

UVA 116 Unidirectional TSP(dp + 数塔问题)的更多相关文章

  1. uva 116 Unidirectional TSP【号码塔+打印路径】

    主题: uva 116 Unidirectional TSP 意甲冠军:给定一个矩阵,当前格儿童值三个方向回格最小值和当前的和,就第一列的最小值并打印路径(同样则去字典序最小的). 分析:刚開始想错了 ...

  2. UVA 116 Unidirectional TSP(DP最短路字典序)

    Description    Unidirectional TSP  Background Problems that require minimum paths through some domai ...

  3. UVa 116 Unidirectional TSP (DP)

    该题是<算法竞赛入门经典(第二版)>的一道例题,难度不算大.我先在没看题解的情况下自己做了一遍,虽然最终通过了,思路与书上的也一样.但比书上的代码复杂了很多,可见自己对问题的处理还是有所欠 ...

  4. uva 116 Unidirectional TSP (DP)

    uva 116 Unidirectional TSP Background Problems that require minimum paths through some domain appear ...

  5. UVA 116 Unidirectional TSP 经典dp题

    题意:找最短路,知道三种行走方式,给出图,求出一条从左边到右边的最短路,且字典序最小. 用dp记忆化搜索的思想来考虑是思路很清晰的,但是困难在如何求出字典序最小的路. 因为左边到右边的字典序最小就必须 ...

  6. UVA - 116 Unidirectional TSP 多段图的最短路 dp

    题意 略 分析 因为字典序最小,所以从后面的列递推,每次对上一列的三个方向的行排序就能确保,数字之和最小DP就完事了 代码 因为有个地方数组名next和里面本身的某个东西冲突了,所以编译错了,后来改成 ...

  7. UVA - 116 Unidirectional TSP (单向TSP)(dp---多段图的最短路)

    题意:给一个m行n列(m<=10, n<=100)的整数矩阵,从第一列任何一个位置出发每次往右,右上或右下走一格,最终到达最后一列.要求经过的整数之和最小.第一行的上一行是最后一行,最后一 ...

  8. UVa - 116 - Unidirectional TSP

    Background Problems that require minimum paths through some domain appear in many different areas of ...

  9. uva 116 - Unidirectional TSP (动态规划)

    第一次做动规题目,下面均为个人理解以及个人方法,状态转移方程以及状态的定义也是依据个人理解.请过路大神不吝赐教. 状态:每一列的每个数[ i ][ j ]都是一个状态: 然后定义状态[ i ][ j ...

随机推荐

  1. hdu 4975 A simple Gaussian elimination problem.(网络流,推断矩阵是否存在)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4975 Problem Description Dragon is studying math. One ...

  2. WinForm----DataGridview---连接数据库,以及双击一条数据,显示信息到Label控件,也可以是TextBox控件。

    最终效果: 代码: using System; using System.Collections.Generic; using System.ComponentModel; using System. ...

  3. 用Python做2048游戏 网易云课堂配套实验课。通过GUI来体验编程的乐趣。

    第1节 认识wxpython 第2节 画几个形状 第3节 再做个计算器 第4节 最后实现个2048游戏 实验1-认识wxpython 一.实验说明 1. 环境登录 无需密码自动登录,系统用户名shiy ...

  4. 服务列表 - Sina App Engine

    服务列表 - Sina App Engine 短信服务 新浪无线短信服务是由新浪无线提供的综合性短信服务. 使用服务 下载SDK: php 服务首页 方法 新浪无线短信服务是由新浪无线提供的综合性短信 ...

  5. BFS寻路的AS3实现

    关于BFS的相关知识由于水平有限就不多说了,感兴趣的可以自己去wiki或者其他地方查阅资料. 这里大概说一下BFS寻路的思路,或者个人对BFS的理解: 大家知道Astar的一个显著特点是带有启发函数, ...

  6. c语言:链表排序, 链表反转

    下面将实现链表排序的排序和遍历显示功能: 所定义的链表结构如下: head -> p1 -> p2 ->p3 ->....->pn; head的本身不作为数据节点,hea ...

  7. 半透明panel

    用API  SetLayeredWindowAttributes

  8. 20款Notepad++插件下载和介绍

    转自:http://www.kuqin.com/developtool/20090628/59334.html Notepad++从3.4版本开始支持插件机制,让用户可选择的为本身已经优秀的Notep ...

  9. CF 8D Two Friends (三分+二分)

    转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove 题意 :有三个点,p0,p1,p2.有两个人ali ...

  10. QTableWidget表格合并若干问题及解决方法

    Qt提供 QTableWidget作为表格的类以实现表格的基本功能,表格中所装载的每一个单元格由类QTableWidgetItem提供.这是基于表格实现 Qt提供的一个基础类,若想实现定制表格和单元格 ...