「luogu3380」【模板】二逼平衡树(树套树)
「luogu3380」【模板】二逼平衡树(树套树)
传送门
我写的树套树——线段树套平衡树。
线段树上的每一个节点都是一棵 \(\text{FHQ Treap}\) ,然后我们就可以根据平衡树的基本操作以及线段树上区间信息可合并的性质来实现了,具体细节看代码都懂。
参考代码:
#include <algorithm>
#include <cstdlib>
#include <cstdio>
#define rg register
#define file(x) freopen(x".in", "r", stdin), freopen(x".out", "w", stdout)
using namespace std;
template < class T > inline void read(T& s) {
s = 0; int f = 0; char c = getchar();
while ('0' > c || c > '9') f |= c == '-', c = getchar();
while ('0' <= c && c <= '9') s = s * 10 + c - 48, c = getchar();
s = f ? -s : s;
}
const int _ = 50010, __ = 2000010, INF = 2147483647;
int n, m, A[_];
int tot, ch[2][__], siz[__], pri[__], val[__];
struct node {
int rt, a, b, c;
inline int Newnode(int v) { return siz[++tot] = 1, val[tot] = v, pri[tot] = rand(), tot; }
inline void pushup(int p) { siz[p] = siz[ch[0][p]] + siz[ch[1][p]] + 1; }
inline void split(int p, int v, int& x, int& y) {
if (!p) { x = y = 0; return ; }
if (val[p] <= v) return x = p, split(ch[1][p], v, ch[1][x], y), pushup(p);
else return y = p, split(ch[0][p], v, x, ch[0][y]), pushup(p);
}
inline int merge(int x, int y) {
if (!x || !y) return x + y;
if (pri[x] > pri[y]) return ch[1][x] = merge(ch[1][x], y), pushup(x), x;
else return ch[0][y] = merge(x, ch[0][y]), pushup(y), y;
}
inline void insert(int v) { split(rt, v, a, b), rt = merge(a, merge(Newnode(v), b)); }
inline void erase(int v) { split(rt, v, a, c), split(a, v - 1, a, b), b = merge(ch[0][b], ch[1][b]), rt = merge(a, merge(b, c)); }
inline void build(int l, int r) { for (rg int i = l; i <= r; ++i) insert(A[i]); }
inline int kth(int p, int k) {
if (siz[ch[0][p]] + 1 > k) return kth(ch[0][p], k);
if (siz[ch[0][p]] + 1 == k) return val[p];
if (siz[ch[0][p]] + 1 < k) return kth(ch[1][p], k - siz[ch[0][p]] - 1);
}
inline int pre(int v) { split(rt, v - 1, a, b), c = a != 0 ? kth(a, siz[a]) : -INF, rt = merge(a, b); return c; }
inline int nxt(int v) { split(rt, v, a, b), c = b != 0 ? kth(b, 1) : INF, rt = merge(a, b); return c; }
inline int rank(int v) { split(rt, v - 1, a, b), c = siz[a] + 1, rt = merge(a, b); return c; }
} t[_ << 2];
inline int lc(int p) { return p << 1; }
inline int rc(int p) { return p << 1 | 1; }
inline void build(int p = 1, int l = 1, int r = n) {
t[p].build(l, r);
if (l == r) return ;
int mid = (l + r) >> 1;
build(lc(p), l, mid), build(rc(p), mid + 1, r);
}
inline void update(int x, int v, int p = 1, int l = 1, int r = n) {
t[p].erase(A[x]), t[p].insert(v);
if (l == r) return ;
int mid = (l + r) >> 1;
if (x <= mid) update(x, v, lc(p), l, mid);
else update(x, v, rc(p), mid + 1, r);
}
inline int rank(int ql, int qr, int v, int p = 1, int l = 1, int r = n) {
if (ql <= l && r <= qr) return t[p].rank(v) - 1;
int mid = (l + r) >> 1, res = 0;
if (ql <= mid) res += rank(ql, qr, v, lc(p), l, mid);
if (qr > mid) res += rank(ql, qr, v, rc(p), mid + 1, r);
return res;
}
inline int kth(int ql, int qr, int k) {
int l = 0, r = 100000000, res;
while (l <= r) {
int mid = (l + r) >> 1;
if (rank(ql, qr, mid) + 1 <= k) res = mid, l = mid + 1; else r = mid - 1;
}
return res;
}
inline int pre(int ql, int qr, int v, int p = 1, int l = 1, int r = n) {
if (ql <= l && r <= qr) return t[p].pre(v);
int mid = (l + r) >> 1, res = -INF;
if (ql <= mid) res = max(res, pre(ql, qr, v, lc(p), l, mid));
if (qr > mid) res = max(res, pre(ql, qr, v, rc(p), mid + 1, r));
return res;
}
inline int nxt(int ql, int qr, int v, int p = 1, int l = 1, int r = n) {
if (ql <= l && r <= qr) return t[p].nxt(v);
int mid = (l + r) >> 1, res = INF;
if (ql <= mid) res = min(res, nxt(ql, qr, v, lc(p), l, mid));
if (qr > mid) res = min(res, nxt(ql, qr, v, rc(p), mid + 1, r));
return res;
}
int main() {
#ifndef ONLINE_JUDGE
file("cpp");
#endif
read(n), read(m);
for (rg int i = 1; i <= n; ++i) read(A[i]);
build();
for (rg int opt, l, r, k, x; m--; ) {
read(opt);
if (opt == 1) read(l), read(r), read(k), printf("%d\n", rank(l, r, k) + 1);
if (opt == 2) read(l), read(r), read(k), printf("%d\n", kth(l, r, k));
if (opt == 3) read(x), read(k), update(x, k), A[x] = k;
if (opt == 4) read(l), read(r), read(k), printf("%d\n", pre(l, r, k));
if (opt == 5) read(l), read(r), read(k), printf("%d\n", nxt(l, r, k));
}
return 0;
}
「luogu3380」【模板】二逼平衡树(树套树)的更多相关文章
- bzoj 3196 Tyvj 1730 二逼平衡树(线段树套名次树)
3196: Tyvj 1730 二逼平衡树 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1807 Solved: 772[Submit][Stat ...
- bzoj 3196/ Tyvj 1730 二逼平衡树 (线段树套平衡树)
3196: Tyvj 1730 二逼平衡树 Time Limit: 10 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description ...
- BZOJ3196 二逼平衡树 ZKW线段树套vector(滑稽)
我实在是不想再打一遍树状数组套替罪羊树了... 然后在普通平衡树瞎逛的时候找到了以前看过vector题解 于是我想:为啥不把平衡树换成vector呢??? 然后我又去学了一下ZKW线段树 就用ZKW线 ...
- BZOJ3196 二逼平衡树 【线段树套平衡树】
题目 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 1.查询k在区间内的排名 2.查询区间内排名为k的值 3.修改某一位值上的数值 4.查询k在区间内的前驱(前驱 ...
- BZOJ 3196 Tyvj 1730 二逼平衡树:线段树套splay
传送门 题意 给你一个长度为 $ n $ 有序数列 $ a $ ,进行 $ m $ 次操作,操作有如下几种: 查询 $ k $ 在区间 $ [l,r] $ 内的排名 查询区间 $ [l,r] $ 内排 ...
- bzoj 3196 Tyvj 1730 二逼平衡树【线段树 套 splay】
四舍五入就是个暴力. 对于线段树的每个区间都开一棵按权值排序的splay 对于第二个操作,二分一下,每次查询mid的排名,复杂度 $ O(nlog(n)^{3}) $ 其余的操作都是$ O(nlog( ...
- [BZOJ3196] [Tyvj1730] 二逼平衡树(线段树 套 Splay)
传送门 至少BZOJ过了,其他的直接弃. 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 1.查询k在区间内的排名 2.查询区间内排名为k的值 3.修改某一位值上的 ...
- [luogu3380][bzoj3196]【模板】二逼平衡树【树套树】
题目地址 [洛谷传送门] 题目大意 区间查询k的排名,查找k排名的数,单点修改,区间前驱,区间后继. 感想 真的第一次写树套树,整个人都不对了.重构代码2次,发现样例都过不了,splay直接爆炸,可能 ...
- 【BZOJ 3196】二逼平衡树 线段树套splay 模板题
我写的是线段树套splay,网上很多人写的都是套treap,然而本蒟蒻并不会treap 奉上sth神犇的模板: //bzoj3196 二逼平衡树,支持修改某个点的值,查询区间第k小值,查询区间某个值排 ...
随机推荐
- 经常使用的cmd命令
ASSOC 显示或修改文件扩展名关联.ATTRIB 显示或更改文件属性.BREAK 设置或清除扩展式 CTRL+C 检查.BCDEDIT 设置启动数据库中的属性以控制启动加载.CACLS 显示或修改文 ...
- Date、DateFormat、Calendar、Math、System
Date(基本已过时了,被Calendar替换) 构造方法(有两个) Date(); Date(long l);long类型的毫秒值 常用方法(其他方法都已被Calendar替换) getTime() ...
- L2-2 小字辈
思路 bfs搜一下. 代码 #include <bits/stdc++.h> using namespace std; const int maxn=1e5+10; vector<i ...
- SSI注入漏洞
简介 SSI是英文Server Side Includes的缩写,翻译成中文就是服务器端包含的意思.从技术角度上说,SSI就是在HTML文件中,可以通过注释行调用的命令或指针.SSI具有强大的功能,只 ...
- 普及C组第二题(8.2)
1340. [南海2009初中]jumpcow(牛跳) (Standard IO) 题目: John的奶牛们计划要跳到月亮上去.它们请魔法师配制了 P (1 <= P <=150,000) ...
- c语言thread用法记录。
https://blog.csdn.net/hitwengqi/article/details/8015646 先是c++11之前的 1.最基础,进程同时创建5个线程,各自调用同一个函数 #inclu ...
- 线性递推BM模板
#include <cstdio> #include<iostream> #include <cstring> #include <cmath> #in ...
- Opencv模块
参考博客:https://blog.csdn.net/u012679707/article/details/79505279
- MYSQL实现分组排序并取组内第一条数据
一.需要实现分组排序并且取组内状态优先级最高的数据 有一张这样的数据表, 需求是根据error_type分组然后取status最小的第一条数据 第一种写法: select t.* from ( sel ...
- CDQ 分治
引言: 什么是CDQ分治?其实这是一种思想而不是具体算法,因此CDQ分治覆盖的范围相当广泛,在 OI 界初见于陈丹琦 2008 年的集训队作业中,故被称为CDQ分治. 大致分为三类: cdq分治解决与 ...